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Abstract

Shortly after its invention in the 1960’s, Cohen’s method of forcing found
applications and generalizations to nearly every branch of mathematical logic.
Due to the work of A. Blass, A. Joyal, W. Lawvere, G. Reyes, A. Scedrov (see [16]),
and several others during the late 1970’s and early 1980’s, it is now understood
that these various forms of forcing are subsumed by the construction of classifying
toposes in category theory. Still, none but the few who are truly initiated in
both logic and sheaf theory might suspect there to be such a deep connection
between Cohen’s efforts and Grothendieck’s topos theory. The following document
is essentially intended to be a readable set of notes introducing the concepts
involved, motivated by a topos theoretic discussion of the continuum hypothesis.
In particular, Boolean valued models of set theory are given a terse overview,
as well as the theory of set-valued sheaves on a site. Finally, a sheaf model of
set theory is given in which the relevant version of the continuum hypothesis is
violated.
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Introduction

The word forcing is used in reference to wide array of different methods of constructing
new models from old; so wide, perhaps, that a single definition could not account for
every context in which it appears. There is, on the other hand, a common theme:
In the vaguest of terms, one could describe forcing as a method for piecing together
models of a given elementary theory in such a way that the properties of the resulting
model are controlled by the interrelations of the pieces. Typically, the “pieces” are
called conditions and their “interrelations” form a partial order.

To the trained eye, this description might hint at a connection with sheaf theory, and
indeed it has been said that “the various types of forcing can all be performed using
sheaves” (see [15]). Drawing this sort of connection took many years and a great
amount of effort on the parts of the logicians working in the area. Due to the work of
A. Blass, A. Joyal, W. Lawvere, G. Reyes, A. Scedrov, M. Tierney, and several others
during the late 1970’s and early 1980’s, it is now understood that these various forms
of forcing are subsumed by the construction of classifying toposes in category theory
(see [16]).

Unfortunately, this description of forcing is beyond the scope of this document, but
there do happen to be a few specific examples of the equivalence that are relatively
easy to explain. The motivating example in this set of notes is a Boolean sheaf topos
called the Cohen topos. The Cohen topos satisfies a generalized version of the axiom
of choice (the internal AC , IAC), but violates a version of the continuum hypothesis
appropriate for toposes. The construction of this category will closely resemble Cohen’s
construction of a model of ZFC with κ-many (Cohen) reals, where κ ą 2N, and will
even make use of the same poset.

Objectively, there is little logical content in the argument below that does not already
appear in Cohen’s proof of the independence of the Continuum hypothesis. The
process of construction cosey follows the Boolean valued model approach used by
Timothy Chow in [4] for pedagogical purposes and introduced by Scott, Solovay, and
Vopenka (its first appearance in print is in J. Bell’s book [3]): A ground model is fixed,
a partially ordered set of conditions in the ground model is chosen with some desired
property in mind, and a new model is constructed from the the poset’s generic obects.

In the classical situation, the ground model is a countable transitive model of ZFC
provided by the Completeness and Lowenheim-Skölem theorems from first-order logic,
the poset is the Cohen poset, and the generic objects are interpretations of names.
Below, the ground model is the whole category Sets of sets and functions and the
generic objects will be double-negation sheaves for the Cohen poset. It was noticed by
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Higgs, intially recorded in a well-known but unpublished document in 1975 (see [6] for
a more general approach than Higgs’), that such a category of double-negation sheaves
on a poset is naturally equivalent to the category of Boolean valued sets, and moreover
that this equivalence respects relativization. This indicates that Cohen’s original proof,
the Boolean-valued model approach, and the sheaf-theoretic construction all contain
essentially the same logical content.

1 Boolean Valued Models

The current section is a terse overview of the Boolean-valued model approach to
forcing. As such, it is intended only to remind the reader of the concepts involved, not
to provide first-time instruction. Sources for further/initial learning include [4] and
[3] for Boolean-valued models, and [10] and [7] and [5] for the classical approach to
forcing.

1.1 Boolean-valued sets

In set theory, the prevailing dogma is that “everything is a set”. In other words, a
set X is a special kind of conglomorate of elements, each of which a set. This seems
circular at first, but defining the empty collection H to be a set, recursion resolves
the apparent circularity. Precisely the same philosophy carries over to Boolean-valued
sets, with “set” replaced by “Boolean-valued set”. Fix a complete Boolean algebra B as
well as the symbols J and K for the top and the bottom elements of B respectively.

Definition 1.1. A B-valued set is a function X Ñ B, where X is a set of B-valued
sets.

For instance, the empty set H is a B-valued set, as well as every (global) element
ptHu “q1 Ñ B of B. Fix a common model pM,Eq of ZFC , ie. a transitive model
whose elements are well-founded sets, and assume that B P M .

Definition 1.2. Write

MB “
 

f P M | f is a B -valued set
(

,

and let LM be the set of finitary first-order formulae in the language te,Ďu Y ta | a P
MBu. Recursively define a function rr´ss : LM Ñ B called the valuation for MB as
follows:

(a) rr´ss preserves with ^, _, and  ,
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(b) for any ϕpxq in LM ,
rrpDxqpϕpxqqss “

ł

aPMB

rrϕpaqss,

(c) for any ϕpxq in LM ,
rrp@xqpϕpxqqss “

ľ

aPMB

rrϕpaqss,

(d) for any B-valued sets x, y,

rrx Ď yss “
ľ

aPdompxq

pxpaq ñ rraEyssq,

(e) and where by x “ y we mean px Ď yq ^ py Ď xq for variables x and y,

rrxEyss “
ł

aPdompyq

prrx “ ass ^ ypaqq.

Conditions (d) and (e) in the previous definition are recursively referential to one
another in the following sense: Let the rank of an element a P MB be rankpaq “

suptrankpbq ` 1 | b P dompaqu. Computing rrxEyss or rrx Ď yss involves a calculation of
the other, but for elements of a strictly lower rank than that of x and y. For example,
rrH Ď yss is an empty join giving J, and rrHEyss “ ypHq for any y : 1 Ñ B.

Note that for the above definition to make sense one could replace the assumption
that B is complete with the weaker assumption that B is M -complete, meaning that
every subset of B indexed by a set in M has a supremum and infimum.

Theorem 1.3. Let rr´ss be the valuation for MB. For any axiom ϕ of ZFC, rrϕss “ J.

The proof can be found in [3]. Any use of the phrase Boolean-valued model is in
reference to the pair pMB, rr´ssq.

1.2 Truth Values?

Now, while Theorem 1.3 states there is a sense in which MB is a model of ZFC , MB

is certainly not a common model. One fundamental difference between MB and a
common model of ZFC is its set of truth values. The set 2 “ t0, 1u in a standard model
of ZFC can alternatively be thought of as the set tfalse, trueu. This allows 2 to play
the role of a subset classifier, the unique set (up to bijection) that satisfies the following
property: For any set X and U Ď X , there is a unique function chpU q : X Ñ 2 such
that chpU qæU is the constant function true and to any other function h : Y Ñ X such
that chpU q ˝ h “ true there corresponds a unique factorization of h through U (in
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other words, imgphq Ď U ). In fact, any formula ϕpxq of the form

px P A ^ ψpxqq

is given uniquely by the function
ϕ : AÑ 2

it induces (and conversely, functions into 2 are identifiable with bounded formulas
such as ϕpxq). Since there are two truth values that such a function can obtain, one
calls a common model of ZFC two-valued.

The model MB, on the other hand, is not usually two-valued. Powersets in MB are
constructed by setting dompPpyqq “ BX for any y : X Ñ B in MB and

Ppyqpxq “ rrx Ď yss

for any x P BX . Following the usual construction of 2 in MB, we obtain the Boolean-
valued set Ω “ PpPpHqq “ BBH , which is isomorphic to B in MB. In other words, MB

has one truth value for each element of B.

The completeness theorem of first-order logic is a statement about two-valued models.
Thus, relying on the completeness theorem to prove the dependence or independence
of a statement of ZFC using Boolean-valued models requires a method of obtaining a
two-valued model from a general Boolean-valued model.

1.3 From Boolean-valued models to two-valued models

Recall that a B-valued set is intended to be an assignment of probability to each
member of X . Obtaining a two-valued model of ZFC from MB consists of separating
the “high” probabilities from the “low” probabilities. This is best done with filters.

Definition 1.4. A subset U of a poset P is called a filter in P if

(a) U ‰ P,

(b) x ď y and x P U implies y P U , and

(c) if x, y P U , then pDz P U qppz ď xq ^ pz ď yqq.

Furthermore, U is called an ultrafilter if U is a maximal filter.

In particular, if P has a bottom K, then K R U . Additionally, a filter on a Boolean
algebra B is an ultrafilter if and only if p@p P Bqpp P U _  p P U q. For a detailed
exposition of the various properties of filters and ultrafilters, see [9].
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Let U Ď B be an ultrafilter on B. The most direct method of obtaining a two-valued
model from a Boolean-valued model is by constructing the smallest two-valued model
M rU s of ZFC containing M as a subset and U as an element. It is highly unlikely
that U is a member of M , but ensuring that M rU s satisfies these desired properties
actually requires that one arrange for U to almost be a member of M .

Definition 1.5. A subset D of a bottomless poset D Ď P is called dense in P if for
any p P P, there is a q P D such that q ď p. A subset of a Boolean algebra B is called
dense if it is dense in B ztKu. A subset G Ď B is called M -generic if G XD ‰ H for
any D Ď B dense in B.

An M -generic set is very much like an average element of M , and will rarely actually
be an element of M . One particularly amusing analogy goes something like this: The
average person, every of whose traits places them at the precise mean of the general
populous, does not exist, and if one were to introduce such a person to the world, the
world would be as it were. Of course, one does not simply add U to M to get M rU s:
The functions in and out of M rU s, intersections and unions, images, and so on, also
need to be present.

The most direct method of constructingM rU s goes as follows: Define the interpretation
ιU pyq of an element y P MB recursively by

ιU pyq “ tιU pxq | x P dompyq ^ ypxq P Uu.

Again, the idea is that the value ypxq is the “probability” that x is a member of y. So,
U is simply picking out the elements of dompyq whose probability of “being in y” is
“high”. Finally, define

M rU s “ tιU pyq | y P M
Bu.

There is a copy of every element of M in M rU s, as well as a copy of U in M rU s.
Indeed, let the name of a set x P M be the B-valued set defined by

dompx̂q “ tẑ | z P xu

and x̂pẑq “ J for each z P x. The generic name, the name of U , is given alternatively
by

dompÛ q “ tû | u P Bu,

and Û pûq “ u for each u P B. Names are first-order definable, and are therefore
actually elements of M (it is in this sense that M almost contains U ). Inductively,

ιU px̂q “ tιU pẑq | z P x ^ J P Uu “ tz | z P xu “ x,
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and
ιU pÛ q “ tιU pûq | u P Uu “ U.

The term forcing enters the picture when the forcing relation is defined.

Definition 1.6. We define for each ϕ in LM and p P B

p , ϕ iff p ď rrϕss.

The relation p , ϕ is read “p forces ϕ”.

Notice that, if MB is a Boolean-valued model of ZFC , then p , ϕ for any p P B and
any axiom ϕ of ZFC . Cohen’s observation was that, if U is M -generic, then M rU s is
a two-valued model of ZFC satisfying every of the forced properties.

Theorem 1.7. Let M be a transitive model of ZFC, and B be a Boolean algebra in
M . If U is an M -generic ultrafilter on B, then M rU s is a transitive model of ZFC.
Moreover, for any ϕ P LM ,

p , ϕ for some p P U implies M rU s |ù ϕ.

Now, suppose the consistency of a certain sentence ϕ with ZFC were called into
question. Since J P U for any filter U , to show that a model of ZFC ` ϕ exists, it
suffices to find a B-valued model of ZFC in which rrϕss “ J and that there exists
some M -generic ultrafilter on B. In the case at hand, such an ultrafilter always exists.

Lemma 1.8. Let M be a countable transitive model of ZFC, and B an M -complete
Boolean algebra in M such that B is atomless, ie. satisfies

p@pqpp ‰ K implies pDqqpq ă pqq.

Then there exists an M -generic ultrafilter U on B.

Proof. If tDn | n P Nu is an enumeration of the dense subsets of B in M (recall that
each of these is dense in B ztKu), one can construct an ultrafilter as follows: Let
d0 P D0ztKu, and suppose d1 P D1, ¨ ¨ ¨ , dn P Dn have been chosen such that

dn ă dn´1 ă ¨ ¨ ¨ ă d1 ă d0.

Since Dn`1 is dense in B, there is some dn`1 P Dn`1 such that dn`1 ď dn. This gives
a strictly descending sequence tdn | n P Nu Ď B. Define

U0 “ tp P B | pDnqpdn ď pqu.
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This defines a filter on B. An application of Zorn’s lemma shows that every filter is
contained in an ultrafilter, so in particular there is an ultrafilter U on B containing
U0. Since dn P U for any n P N, U is M -generic.

The following theorem is a direct consequence of this lemma.

Theorem 1.9. Let M be a countable transitive model of ZFC and B be an M -
complete atomless Boolean algebra in M . Then ZFC ` ϕ is consistent if rrϕss “ J in
MB.

1.4 Independence of CH

The simplest example of Boolean-valued models in action is the proof of the consistency
of ZFC `  CH , where  CH is the formula

pDAqp|N| ă |A| ă |2N|q.

In view of Theorem 1.9, the goal will be to construct a Boolean-valued model in which
rr CHss “ J.

Fix a countable transitive model M of ZFC , and let κ ą 2N in this model. Let P
be the set of functions f : A Ñ 2 in M with A a finite subset of κ ˆ N, and order
the elements of P by reverse inclusion: For any f, g P P, set f ď g (read f extends g)
if and only if g Ď f . Since P is first-order definable with parameters in M , P P M .
Observe that P is bottomless. The partially ordered set P is called the Cohen poset.

To obtain a Boolean algebra from P, say that D Ď P is downwards-closed when

p@p P Dqp@q ď pqpq P Dq.

Let
B “ tD Ď P | D P M ^D is dense ^D is downwards-closedu,

and order B by inclusion. Again, B is first-order definable in M , so B P M .

Lemma 1.10. The partially ordered set B is a Boolean algebra under the operations

D ^D1 “ D XD1, D _D1 “ tq P P | pDp P D YD1qpq ď pqu,

and
 D “ tq P P | pDp P P zDqpqεpqu.
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In fact, a more general statement is true: If X is any topological space, say that
an open subset U Ď X is regular if it is equal to the interior of its closure, written
intpclpU qq “ U . Then the partially ordered set of regular open sets ROpXq is a
Boolean algebra under the operations

U ^ V “ U X V, U _ V “ intpclpU Y V qq,

and
 U “ intpXzU q.

Taking the open subsets of P to be the downwards-closed subsets of P, one sees that
the interior and closure operations are given by

intpAq “ tp P A | p@q ď pqpq P Aqu and clpAq “ tp P P | pDq ď pqpq P Aqu,

and therefore
intpclpAqq “ tp P P | p@q ď pqpDr ď qqpr P Aqu.

Verifying
intpclpÓ ppqqq “Óppq

is a brief exercise. In fact, the operation p ÞÑÓ ppq monotonically maps P onto an
isomorphic copy of itself in B.

Lemma 1.11. The Boolean algebra just defined, B, is the unique Boolean algebra (up
to isomorphism) containing the Cohen poset as a dense subset.

The proof that MB believes  CH with probability J is sketched as follows. Define
the B-valued set D : κ̂ ˆ N̂Ñ B by

Dpα̂, n̂q “ tp P P | ppα, nq “ 0u

for any pα, nq P κ ˆ N. Since D is first-order definable (with parameters in M ), D is
actually a B-valued set in M .

Now, D gives rise to a function g : κ̂Ñ BN̂ in M , defined

gpα̂qpn̂q “ Dpα̂, n̂q,

which one can check is a function ”with probability” J. The function g is actually
injective with probability J as well, since the domain of each p P P is finite. This
exhibits the name ĝ of an injective function κ̂Ñ BN̂ in MB. Weilding the existence of
such a function, one can show that

rr CHss ě rrN ă 2̂N ă κ ď BN̂ ss “ J

in MB. In other words, the continuum hypothesis fails with probability J in MB, and
by Theorem 1.9, ZFC `  CH is consistent.
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1.5 Where to go next

The construction and argument above is very nearly the construction and argument
found in the proceeding sections. There is a very important difference between the
two, however. What is to follow is a shift in perspective that not only places Boolean
valued models in the context of category theory, but has also allowed for a unified
theory of forcing.

The motto is “forcing is sheaves”. Essentially, a category-theoretic rephrasing of the
notions of Boolean-valued model, name, and interpretation reveals that many of the
various elements of forcing are specific examples of concepts already appearing in
geometry, topology, and algebra.

2 A Crash Course

To fully understand the topos theory in the following section requires a comfortability
with the language of categories. The current section is intended to be a crash course
in the necessary ideas, but is by no means a self-contained and complete exposition of
category theory. For a more in-depth study than the current section, consult any of
[1], [14], or the classic [11].

2.1 Categories, functors, natural transformations

Definition 2.1. A category is a pair of classes C “ pobjpCq, arrpCqq equppied with
two functions dom, cod : arrpCq Ñ objpCq and an operation pf, gq ÞÑ g ˝ f P arrpCq
defined for each pair pf, gq P arrpCq ˆ arrpCq for which dompgq “ codpf q, altogether
satisfying the following two conditions.1

(C1) For every A P objpAq, there exists idA P arrpCq satisfying f ˝ idA “ f and
idA ˝g “ g whenever either is defined.

(C2) For any f, g, h P arrpCq such that both h ˝ g and g ˝ f are defined, ph ˝ gq ˝ f “
h ˝ pg ˝ f q.

Members of objpCq are called the objects of C, and arrpCq are called the arrows. A
pair pf, gq for which g ˝ f is defined is called composable. The notation f : AÑ B is
reserved to denote an arrow with dompf q “ A and codpf q “ B, A is the source or
domain of f , and B is the target, or codomain.

1One could translate these conditions into a first-order theory of categories and define a category
to be a model of this theory. In other words, category theory is an elementary theory, just like ZFC .
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For example, the category Sets of sets has its class of objects objpSetsq “ tx |

x is a setu and arrows arrpSetsq “ tf | f is a function between setsu. Similar exam-
ples include Groups and Rings and the category Top of topological spaces and
continuous maps, with arrows given by homomorphisms and continuous maps. A
category in which every arrow is an identity arrow is called a discrete category.

For a different flavour of example, consider any preordered set P. One forms a category
from P by taking objpPq to be the points in P, arrpPq “ď, and dompp ď qq “ p and
codpp ď qq “ q (in other words, there is a unique arrow p Ñ q between any two p, q
such that p ď q). This gives a category structure to partially ordered sets (posets),
Boolean algebras, and the like. Conversely, a category with a unique arrow between
any two objects is a poset.

For brevity’s sake, g ˝ f will almost always be shortened to gf . Moreover, if h and
g are arrows, and there exists an arrow f such that h “ gf , one says that h factors
through g (via f ).

Definition 2.2. Fix an arrow f : A Ñ B. A section of f is any arrow s : B Ñ A

such that fs “ idB (idB factors through f ), and a retract of f is any arrow r : B Ñ A

such that rf “ idA (idA factors through r). One calls f an isomorphism if there is a
g : B Ñ A that is both a section and a retract of f . In such a case, g is called the
inverse of f .

To every category C there curresponds a dual category Cop, called its opposite, defined
by the equations objpCopq “ objpCq and

arrpCopq “ tf op : B Ñ A | pf : AÑ Bq P arrpCqu.

Essentially, Cop is the category C with all of its arrows reversed.

Definition 2.3. A functor F : C Ñ D is a homomorphism of categories, ie. a pair
of functions F : objpCq Ñ objpDq and F : arrpCq Ñ arrpDq such that F pg ˝ f q “
F pgq ˝ F pf q for any composable pair pf, gq and F pidAq “ idFA for any object A.

A functor of the form F : Cop Ñ D is called a contravariant functor and identified
with its corresponding pair of functions F : objpCq Ñ objpDq and F : arrpCq Ñ arrpDq.
In this context, F pg ˝ f q “ F pf q ˝ F pgq is written instead.

One easy example of a functor CÑ D is a constant functor : Given an object D of D,
define ∆D : CÑ D to be the functor

∆DpCq “ D, ∆Dpf : C Ñ C 1q “ idD .
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Another easy example is the identity functor idC : CÑ C, which does what one might
hope: Nothing!

For a different set of examples, call a category with a unique object a group if every
of its arrows is an isomorphism, and recall that a poset is simply a category with a
unique arrow between any two objects. A functor between groups is then just a group
homomorphism, and a functor between posets is simply a monotone function.

At this point, one might like to form the category of categories Cat, whose arrows are
functors between categories. To avoid the usual paradoxes, Cat is taken to be the
category of small categories instead, where a category C is called small if arrpCq is a
set.

Definition 2.4. A natural transformation η : F Ñ G between functors F,G : CÑ D
is a family of arrows tηA : FAÑ GA | A P objpCqu such that the following diagram2

commutes for every f : AÑ B.

FA GA

FB GB

ηA

F pf q Gpf q

ηB

A natural isomorphism is a natral transformation that has an inverse.

If η : F Ñ G and σ : GÑ H are natural transformations, the composition pσ ˝ ηq is
defined by the equation pσ ˝ ηqA “ σA ˝ ηA, and also defines a natural transformation3.

For any functor F : CÑ D, there is an identity natural transformation idF : F Ñ F

defined by pidF qA “ idFA. This gives the structure of a category to the set

DC “ tF | F : CÑ D is a functoru

whose arrows are natural transformations.

2.2 Presheaves and the Yoneda embedding

A functor of the form Cop Ñ Sets is called a presheaf, and the category of presheaves
SetsC

op
is denoted pC. Instructive examples of presheaves used in analysis and topology

2A diagram (in a category C) is a graph whose vertices are objects and edges are arrows. A
diagram is said to commute if for any two objects A and B in the graph, composing arrows along any
two paths from A to B in the graph give the same arrow AÑ B.

3Notice that it follows that a natural transformation tηAu is a natural isomorphism if and only if
ηA is an isomorphism for any A.
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include the continuous and bounded function algebra functors C,B : OpXq Ñ R,
where OpXq is the poset of open subsets of a topological space X ordered by inclusion.

Set
HomCpA,Bq “ tf : AÑ B | f P arrpCqu,

and call C locally small if HompA,Bq is a set for any two A,B P C. For a locally small
category C and any C P C, the assignment

pyCqA “ HompA,Cq

determines a map yC : objpCq Ñ objpSetsq. Furthermore, define

f˚ : HompB,Cq Ñ HompA,Cq

by the equation f˚phq “ h ˝ f and set pyCqpf q “ f˚. The resulting presheaf yC is
called the Yoneda embedding of C .

The assignment C Ñ yC so far defines a function y : objpCq Ñ objppCq. To give y

functor structure, set pf˚qAphq “ f ˝ h for any f : C Ñ C 1 and h : A Ñ C . The
resulting family of functions

pf˚qA : HompA,Cq Ñ HompA,C 1q

determines a natural transformation f˚ : yC Ñ yC 1. Setting ypf q “ f˚ gives a functor
y : CÑ pC, called the Yoneda embedding of C.

Lemma 2.5. (Yoneda) Let C be a locally small category and C P objpCq. For any
presheaf P : Cop Ñ Sets, the function

ΦC : HompyC, P q Ñ PC

defined by the equation
ΦCpηq “ ηCpidCq

is a bijection. Moreover, the family tΦCu defines a natural isomorphism Φ : Hompyp´q, P q Ñ

P .

Observe that, if P “ yC 1 for some C 1, this gives a natural bijection

HompyC, yC 1q – HompC, C 1q

whose inverse is the Yoneda embedding. A useful consequence of this is that every
natural transformation Homp´, Cq Ñ Homp´, C 1q is of the form f˚ for some f : C Ñ
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C 1. Generally, one says that a functor F : CÑ D is full and faithful if its action on
arrows

F : HompA,Bq Ñ HompFA, FBq

is surjective and injective respectively.

From here on out, categories will generally be assumed to be locally small. This is not
a huge drawback, notice, since any category of the form pC, when C is small, is locally
small.

2.3 Equivalences and adjoints

Interestingly, the notion of isomorphism for categories is nearly useless to ordinary
mathematicians. Consider the Gelfand-Naimark theorem or Stone’s representation
theorem, or any one of the other “equivalence results” from the 20th century: These
equivalences are concerned with “invertible constructions”, not bijective correspon-
dances. This indicates that the notion of isomorphism as equivalence is too strong.
The following notion, made possible by the laguage of category theory, specializes to
each of the mentioned famous equivalences.

Definition 2.6. A functor F : C Ñ D is an equivalence of categories if there is
another functor G : DÑ C and natural isomorphisms η : idC Ñ GF and ε : FGÑ idD.
If there is an equivalence of categories between C and D, then C and D are called
eqivalent, written C » D.

This turns out to be the right notion of equivalence for categories: Essentially, if ϕ is
an elementary property that a category may or may not have (here, “ is replaced by
– in the language) and C » D, then C has the property ϕ if and only if D does.

There is an equivalence of categories that suggests some role in the analogy between
MB in the previous section and the categories of sets in the sequel. Given a category
C and an object A in C, we form the slice category C {A whose objects are given by

objpCq “ tb P arrpCq | codpbq “ Au

and every of whose arrows h : b1 Ñ b2 is given by an arrow h : B1 Ñ B2 such that

B1 B2

A

h

b1
b2

commutes.
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Theorem 2.7. Let A be any set, thought of as a discrete category. There is an
equivalence of categories SetsA » Sets{A.

The idea behind the proof is simply that an object F of SetsA is a family of sets
indexed by the elements of A, while an object in Sets{A is a family of sets over A.
The equivalence is given by the functor

T : SetsA ÝÑ Sets{A,

for which
T pF q :

ğ

aPA

F paq Ñ A

is defined by the equation
T pF qpx P F paqq “ a.

The reverse construction is likely not hard to imagine.

In light of the theorem above, one might expect SetsB » Sets{B. Of course, B is not
a discrete category (it is a poset), so SetsB is far more restricted than Sets{B. Dually,
Sets{B is far too complicated to be a Boolean valued model: A Boolean valued set is
not just any function from a set to B! Instead, the category of Boolean valued sets
is a strict subcategory of Sets{B: Its objects are functions such as x : X Ñ B and
y : Y Ñ B where X and Y contain only Boolean valued sets, and its arrows are subsets
of the form f Ď X Ñ Y such that

rrp@r P Xqp@s, tqppr, sq, pr, tq P f ñ s “ tqss “ J,

ie. its arrows are relations that are “functions with probability J”. Transporting
this subcategory of Sets{B along the equivalence in Theorem 2.7 produces a certain
subcategory of SetsB to be defined and explored later.

A mild weakening of the concept of equivalence is that of having a left or right adjoint,
which encompasses “almost inverse” constructions such as the free-group construction,
the hom-tensor adjunction, and the sheafification construction for spaces. Note that
the definition below marks the first instance of a universal mapping property in this
document, a formula of the form p@f qpD!gqpDpf, g, āqq where the variables denote
arrows and Dpf, g, āq denotes a diagram in which that arrows f, g and every ai in ā
appear.

Definition 2.8. Let F : C Õ D : G be a pair of functors. One says that F is
left adjoint to G (G is right adjoint to F ), written F % G, if there is a natural
transformation η : idC Ñ GF satisfying the following universal mapping property:
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For any f : A Ñ GB in C, B P objpDq, there is a unique g : FA Ñ B such that the
following diagram commutes.

A GFA

GB

ηA

f
Gpgq

The natural transformation η is called the unit of the adjuntion.

Equivalently, for C and D locally small categories, F % G if and only if there is a
bijection

ΦA,B : HomCpA,GBq – HomDpFA,Bq

that is natural in A and in B. Here, natural in A means that the diagram

HompA,GBq HompFA,Bq

HompA1, GBq HompFA1, Bq

ΦA,B

f˚ F pf q˚

ΦA1,B

commutes for every f : A1 Ñ A. What it means for ΦA,B to be natural in B is similar.

Any adjunction F % G is also given uniquely by its counit ε : FGÑ idD, defined by
the universal mapping property dual to that of the unit η: For any g : FAÑ B in D,
there is a unique f : AÑ GB such that the folowing diagram commutes.

FGB B

FA

εA

gF pf q

While η basically supplies the map ΦA,B defined above, ε supplies its inverse.

Lemma 2.9. Adjoints are unique up to isomorphism. In other words, if F % G and
F % G1, then there is a natural isomorphism G – G1.

There are many examples of adjoint functors in ordinary mathematics. For example,
the forgetful functor U : Groups Ñ Sets, which takes a group to its underlying
set, has the free-group functor as a right adjoint: Rewording this in terms of the
isomorphism Φ, all this says is that a homomorphism of a fixed free group is determined
by its effect on generators.
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One example from pure category theory is the constant/section adjunction. Recall
that for any set A one can form the constant functor ∆A : Cop Ñ Sets. In fact, ∆ is
itself a functor, with

∆pf : AÑ Bq : ∆AÑ ∆B

given by the constant family, fC “ f for any C in C. Explicitly, one obtains a functor
of the form ∆ : SetsÑ pC. Going in the other direction, define Γ : pCÑ Sets as follows:
For any functor F : Cop Ñ Sets,

ΓF “ Homp∆1, F q,

and Γpσ : F Ñ Gq “ σ˚ as usual. The calculation

Homp∆A, F q – Homp
ğ

aPA

∆1, F q

–
ź

aPA

Homp∆1, F q

–
ź

aPA

ΓF – HompA,ΓF q

takes place in the category of sets, and reveals that ∆ % Γ. In fact, one even has

Γ∆A “ Homp∆1,∆Aq – HomSetsp1, Aq – A,

which is not uncommon in this sort of situation.

For a different sort of example, consider a Boolean algebra B. Fix a p P B and consider
the map p ^ p´q : B Ñ B defined by q ÞÑ p ^ q. A routine calculation reveals that
p ^ p´q is monotone, or in other words a functor on B. Recall that the implication
operator ñ, defined by the equation pñ q “  p_ q, is characterized by the property

pp ^ q ď rq if and only if pq ď pñ rq

in B. A second calculation reveals that pñ p´q is also a functor, so the characteristic
formula gives p ^ p´q % pñ p´q.

Definition 2.10. A lattice H with a top and bottom is called a Heyting algebra if
p ^ p´q : HÑ H has a right adjoint for any p P H.

Where Boolean algebras were invented to study classical logic algebraically, Heyting
algebras were formulated to study the logic of intuitionism adopted by Brouwer,
Heyting, and even Poincaré. Intuitionistic logic differs from classical logic in that it is
the logic of strictly positive proofs, rejecting any use of the law of excluded middle.
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This manifests in the only difference between Heyting and Boolean algebras: If the
identity   ϕ “ ϕ holds for any ϕ in a Heyting algebra H , then H is a Boolean
algebra.

Possibly the most useful property of right and left adjoints is that they can be used
to transfer certain constructions, called limits and colimits, from one category to the
next.

2.4 Limits

Definition 2.11. Let P : C Ñ D be any functor. A cone for P is an object D P D
and a family of maps tdA : D Ñ PA | A P objpCqu indexed by the objects of C such
that for any arrow f : AÑ B in C, P pf q ˝dA “ dB . A cone pX, tηAuq for P is limiting,
or a limiting cone, if it satisfies the following universal mapping property: For any
other cone pD, tdAuq, there is a unique morphism of cones σ : D Ñ X in D such that
ηA ˝ σ “ dA.

The category D is said to be complete if every functor into D from a small category has
a limiting cone. Similarly, D is said to have finite limits if every functor P : CÑ D
with C a finite category (ie. arrpCq is finite) has a limiting cone.

Limiting cones are unique up to isomorphism, so one often writes X “ lim
ÐÝ

P and says
that X is the limit of P if pX, ηq is a limiting cone for P .

Functors from finite categories are often thought of as diagrams (and in fact, these
two ideas are equivalent). For instance, the diagram

A Y B

corresponds to a functor from a category of the same shape,

‚ ‚ ‚

taking the first “‚” to A, the left “‚ ÝÑ ‚” to A ÝÑ B, and so on. The limit of a
diagram of this shape is called a pullback, and is an important construction found
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throughout mathematics. Other prominent examples include the limit of a diagram of
the form

‚ ‚ ,

called an equalizer ; the limit of an empty diagram, the terminal object ; and the limit
of a diagram of the form

‚ ‚

called a product. If A and B are objects, then the product of A and B is denoted
A ˆ B, and the arrows A ˆ B Ñ A and A ˆ B Ñ B are called projections, often
denoted πA and πB respectively.

Since the pullback construction is especially important to understand, some concrete
examples are in order. Consider a poset P, as well as p, q, r P P such that p ď r and
q ď r. Then pÑ r Ð q is a diagram in P. The pullback of this diagram is an element
z P P such that for any cone x ď p, q, r one also has x ď z, as in the following diagram.

p r

z q

x

This makes z “ p^ q. In other words, in a poset, pullbacks are products. In fact, in a
category with a terminal object 1 and objects A and B, A ˆ B is the pullback of the
diagram AÑ 1 Ð B. For an example of a different flavour, let A, B, and C be sets
and f : AÑ C , g : B Ñ C . Define the set

D “ tpx, yq | f pxq “ gpyqu Ď A ˆ B,

and let πA : D Ñ A and πBD Ñ B be the projections onto A and B respectively. It
follows right from the definition that pD, tπA, πBuq is a limiting cone for A f

ÝÑ C
g
ÐÝ B.

One might wonder if, since products can be formed in a category with pullbacks and a
terminal object, what other kinds of limits can be formed in such a category? This
question has an illuminating answer, perhaps more illuminating than its proof.

Lemma 2.12. Let C be any category. The following are equivalent:

(a) C has finite limits.

(b) C has pullbacks and a terminal object.
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(c) C has equalizers and finite products.

Dual to the concept of a limit is that of a colimit, which is simply a limit in the
opposite category. Following the idea that colimits are simply limits “with the arrows
reversed”, the notation lim

ÝÑ
F is used to denote the colimit of the functor F . Going

from a category to its opposite, a pullback becomes a pushforward, a product becomes
a sum (or coproduct), an equalizer becomes a coequalizer, and the terminal object
becomes initial. Examples of sums include the disjoint union operation in Sets and
the _ operation in a lattice.

Untangling the definition, the sum operation can be seen as a direct generalization of
the disjoint union operation in Sets. The coproduct of A and B is denoted A \ B,
and the maps AÑ A \ B and B Ñ A \ B are called inclusions.

Definition 2.13. Let F : C Ñ D and P : I Ñ C be functors, and pA, dq be a cone
for P . Then F is said to preserve limits for P if pFA, F pdqq is a limiting cone for
FP when pA, dq is a limiting cone for P . Generally, F is said to be continuous if F
preserves limits for any P : IÑ C.

The analogous definition for colimits is evident, and a functor that preserves colimits
is caled cocontinuous.

There are several continuity/cocontinuity results that will show up in the material to
come. The most important one is that y is continuous, ie.

HompC, lim
ÐÝ

P q – lim
ÐÝ

HompC, P p´qq

for any functor P : I Ñ C and C P C, where the latter limit is taken in SetsI.
Furthermore, the functor yC “ Homp´, Cq is cocontinuous. Since yC is contravariant,
this takes the equational form

Homplim
ÝÑ

P, Cq – lim
ÐÝ

HompP p´q, Cq.

In particular, one has the familliar equations

HompA,B ˆ Cq – HompA,Bq ˆ HompA,Cq

HompA \ B,Cq – HompA,Cq ˆ HompB,Cq

Where C “ Sets above, one can actually see lim
ÐÝ

and lim
ÝÑ

as functors SetsI Ñ Sets,
taking a functor to its limit and colimit respectively (their effect on arrows is computed
using cones). In this setting, it is actually the case that lim

ÐÝ
% ∆ % lim

ÝÑ
. See [1] for a

nice exposition of this fact.
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The second continuity result that will appear later is known as RAPL (right adjoints
preserve limits). Its applications extend far beyond those found in the proceeding
sections.

Theorem 2.14. Let F % G be a pair of adjoint functors. Then G preserves limits,
and F preserves colimits.

The third continuity result worth mentioning is actually more of a completeness result.

Theorem 2.15. The category pC is the cocompletion of the category C, in the sense
that every presheaf F can be written in the form

F – lim
ÝÑ
py ˝ P q

for some functor P : IÑ C, and that every functor CÑ D extends to a unique functor
rCÑ D.

Suppose F – lim
ÝÑ
py ˝ P q and G is a presheaf on C. Let ιi : yP i Ñ F denote an

inclusion, so that pF, tιiuq is a limiting cone for y ˝ P . Then, since pG, tηιiuq is a cone
for G, the universal mapping property for limiting cones implies that η is determined
uniquely by the maps η ˝ ιi. In particular, if η ‰ µ for some µ : F Ñ G, then for some
i P objpIq, η ˝ ιi ‰ µ ˝ ιi. In such a case, one says that pC is generated by the class of
representable functors tyC | C P objpCqu.

2.5 The natural numbers

The statement of  CH implies some a priori conception of the natural numbers. To
make sense of the statement of  CH for categories, the natural numbers need to
be given a categorical characterization. To this end, it helps to consider the sort of
process that N is used to describe: Indexing denumerable lists.

Definition 2.16. In a category with a terminal object 1, an inductive system pX, t, zq

is any diagram of the form

1 X Xz t .

The inductive systems form a category, an arrow in which is an arrow X Ñ Y such
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that the following diagram commutes.

1 X X

Y Y

z

z1

t

t1

A natural numbers system pN, s, zq is an initial object in the category of inductive
systems, and N is called a natural numbers object.

That
1 N NH p´q`1

is the natural numbers system for Sets is an easy exercise. Recall that N is a set
because the axiom of infinity deems it to be so. Indeed, one might consider the mere
existence of a natural numbers object to define an axiom of infinity for categories.

This internal form of the axiom of infinity is not so rarely satified. Actually, many
categories have natural numbers objects, as the following lemma indicates.

Lemma 2.17. Let F : C Õ D : G be a pair of adjoint functors, F % G, such
that F preserves finite limits. If pN, s, zq is a natural numbers system for C, then
pFN, F psq, F pzqq is a natural numbers system for D.

Recall the adjunction ∆ % Γ of the constant and section functors ∆ : Sets Ô SetsC : Γ

from earlier, and observe that ∆ is a continuous functor. Thus, the lemma above
implies that any category of the form pC has the constant functor ∆N as a natural
numbers object.

3 Logic and Toposes

With a little category theory under one’s belt, it is possible to begin answering
questions such as what it means for a category to give a model of ZFC . One such
answer would involve simply translating the axioms of ZFC into category theoretic
language. However, as will soon become clear, category theoretic language allows for
an entirely different depiction of mathematical foundations. The incredibly simple and
flexible notion of a “category of sets”, called a topos, will take center stage. Toposes
interpret higher-order intuitionistic logic, but are also the home of sheaves (to be
defined later). As will be discussed near the end of the next section, sheaves are the
carriers of models of ZFC .
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3.1 The Subobject Functor

Recall the model M , the Boolean algebra B P M , and the construction of MB in the
previous section. The structure MB earns its title as a Boolean-valued model because
of its Boolean algebra of truth values, or values of formulas. But, what exactly are
truth values? Such an idea is captured beautifully by the laguage of category theory,
inspired by the usual identification of formulas with the subsets they define.

The internal logic of M consists of the lattice of elements of 2 “ PpPp0qq, the subset
classifier. As an object in Sets, 2 is characterized by its universal mapping property.
In order to make sense of “characteristic arrows”, one needs a notion of “subobject”.

Definition 3.1. Let C be a category. An arrow m : B Ñ A in C is called monic if for
any object C in C and any arrows i, j : C Ñ B, mi “ mj implies i “ j (equivalently,
m˚ is injective). Say that two monic arrows m1 : B1 Ñ A and m2 : B2 Ñ A are
equivalent if there is an isomorphism h : B1 Ñ B2 such that m2h “ m1.

Dually, an arrow in C is called epic if it is monic in the opposite category Cop.
Unpacking that statement, an arrow k : AÑ B is epic if and only if ik “ jk implies
i “ j for any arrows i and j out of B (equivalently, k˚ is injective).

Write SubpAq to denote the class of equivalence classes of monic arrows into A. An
element of SubpAq is called a subobject of A. In Sets, a function is monic if and only
if it is injective, and epic if and only if it is surjective. An equivalence class of monic
arrows into a fixed set A is identifiable with its image, a subset of A. Thus, if B Ñ A

is a monic arrow, we refer to its corresponding subobject with B Ď A.

Lemma 3.2. Let B,C Ď A. Define a relation ďA on SubpAq by setting B ďA C if
and only if there is an arrow B Ñ C such that the following diagram commutes

A

B C

Then ďA is a poset relation on SubpAq.

Using Sets as an example again, SubpAq is identifiable with the Boolean algebra 2A. It
is in this sense that the set SubpAq is given internally by the exponent 2A of the subset
classifier 2 in Sets. Translating the universal mapping property of 2, one obtains the
notion of a subobject classifier.
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Definition 3.3. In a category C, a subobject classifier is an object Ω in C equipped
with an arrow true : I Ñ Ω such that for any U Ď A, there is a unique arrow
chpU q : AÑ Ω such that the following is a pullback diagram.

A Ω

U I

chpUq

!

true

Actually, if Ω is a subobject classifier equipped with the arrow true : I Ñ Ω, then
I is necessarily a terminal object for the category. Indeed, idA is always monic, so
|HompA, Iq| ě 1 for any A. To see the reverse, observe that

I Ω

I I

true

idI

idI

true

is a pullback diagram. This makes true monic, so |HompA, Iq| ď 1.

In set theory, the notation 2A is used to denote the set of functions HompA, 2q

from A to 2. Now, given the obvious equivalence between the powerset PpAq and
SubpAq, it is traditional in set theory to identify SubpAq with 2A. In fact, define
Subpf : AÑ Bq : SubpBq Ñ SubpAq to be the function

Subpf qpV q “ f´1pV q “ ta P A | f paq P V u

for any V Ď B. This gives Subp´q functor structure, with respect to which the equiva-
lence Subp´q – Homp´, 2q is a natural isomorphism. It is this natural equivalence that
is referred to when one says that 2 represents Subp´q in Sets. More generally, in a
category with finite limits and a subobject classifier, there is a canonical functor struc-
ture on Subp´q with respect to which a natural isomorphism Subp´q – Homp´,Ωq

exists.

The need for finite limits can be motivated by thinking of a category as a sort of
universe of discourse. Essentially, one would like the object Ω to represent the internal
logic of its ambient category, in the same way that the Boolean algebra 2 represents the
internal logic of Sets (ie. formulas can be identified with their corresponding functions
into 2). The internal logic of the category Sets is classical logic4, while the internal

4Actually, higher-order cassical logic.
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logic of (the category) MB is B-valued classical logic. The precise meaning of the
phrase “internal logic” is somewhat complicated, but the basic idea is that a category
with a subobject classifier is able to interpret some fragment of intuitionistic logic,
and the richness of the fragment depends on the richness of the ambient category.

Fix a category C with finite limits. To give Subp´q the structure of a functor CÑ Sets,
define for each f : AÑ B in C and U Ď B the obect f´1U to be the pullback of the
diagram A

f
ÝÑ B

Ď
ÐÝ U , as in

A B

f´1U U

f

It follows from the next lemma that the arrow f´1U Ñ A above represents a subobject
of A in C.

Lemma 3.4. Suppose the following diagram is a pullback diagram

A B

P C

Then P Ñ A is monic if C Ñ B is.

Therefore, f´1 : SubpBq Ñ SubpAq. The next lemma implies that f´1 is actually
monotone (ie. a functor).

Lemma 3.5. Consider the following commutative diagram

A B C

P Q D

in which the right-hand square is a pullback diagram. Then the outer rectangle is a
pullback if and only if the left-hand square is a pullback.

The same lemma can also be used to show that Subp´q is a contravariant functor, in
the sense that pfgq´1 “ g´1f´1. The following lemma states that the isomorphism
SubpAq – HompA,Ωq is natural in A.
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Lemma 3.6. In a category C with finite limits and a subobject classifier, if f : AÑ B

is any arrow in C, then the following diagram commutes.

SubpAq HompA,Ωq

SubpBq HompB,Ωq

chp´q

chp´q

f´1 f˚

Proof. The two smaller rectangles below are pullbacks by definition.

A B Ω

f´1V V 1

f chpV q

!

true

By the previous lemma, the outer rectangle is a pullback. By uniqueness of character-
istic functions, chpf´1V q “ chpV qf “ f˚pchpV qq.

3.2 Exponentials and Powerobjects

One could also see Subp´q as a covariant functor, ie. a functor C Ñ Sets. This
requires the slightest additional structure on C.

Definition 3.7. In a category C, the exponential BA of B by A is an object equipped
with an arrow ε : A ˆ BA Ñ A satisfying the following universal mapping property in
C: For any h : A ˆX Ñ A, there is a unique trphq : X Ñ BA such that the following
diagram commutes.

A ˆ BA A

A ˆX

ε

h
idA ˆ trphq

In a category C with a subobject classifier Ω, the powerobject PA of A is the exponential
ΩA of Ω by A.5

5There is an alternative definition of powerobject which does not require the presence of a subobject
classifier: One could call a powerobject of A any object which represents the functor Subpp´q ˆ Aq,
in the sense that HompB,PAq – SubpB ˆ Aq for any B. This definition removes the need to include
subobject classifiers as part of the definition of a topos below, as any category with finite limits and
power objects has Pp1q as a subobject classifier.
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The map ε above is often called evaluation, because that is precisely its role in Sets:
The exponential BA of a set B by a set A is precisely the set of functions AÑ B, and
εpa, f : AÑ Bq “ f paq.

Actually, one can think of A ˆ p´q and p´qA as functors. Let F “ A ˆ p´q. To see F
as a functor, let f : B Ñ C be any arrow and define F pf q to be the unique arrow such
that the following diagram commutes.

A A ˆ B B

A A ˆ C C

idA F pf q f

Namely, F pf q “ idAˆf . Similarly, let G “ p´qA. To see G as a functor, let Gpf q be
the unique arrow such that the following diagram commutes

A ˆ CA C

A ˆ BA B

idA ˆGpf q f

A rephrasing of Definition 3.7 is readily available: D is the exponential of B by A if
and only if there is a bijection

HompA ˆ C,Bq – HompC,Dq

natural in B and C . This proves the following lemma.

Lemma 3.8. Let C be a category with finite limits and exponentials.6 Then, for each
A P objpCq, A ˆ p´q and p´qA are functors, and A ˆ p´q % p´qA.

Recall that in a Boolean algebra containing p, one finds the adjoint relation p^ p´q %
pñ p´q. This essentially reveals that pñ q is the exponential of q by p for any point
q.7

3.3 Toposes

Putting all of the above together, one obtains the definition of a topos.
6This kind of category is said to be cartesian closed.
7This should be no surprise, given modes ponens!
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Definition 3.9. An elementary topos (or simply a topos) is a category with a
subobject classifier, finite limits, and powerobjects.8

The following lemma is immediate from the definition of a topos and the universal
mapping property for exponentials.

Lemma 3.10. In a topos E with subobject classifier Ω, Pp1q – Ω.

The very simple list of properties that define toposes have many consequences, most
of which highly nontrivial. Every of [13], [8], and [2] is a comprehensive guide to the
topic, which I do not intend to give here. The following theorem lists the essential
properties of toposes, whose proofs are found throughout [13]. From now on, let E
denote an arbitrary topos.

Theorem 3.11. The following statements hold in E.

(1) If an arrow is both monic and epic, then it is an isomorphism.

(2) E has finite colimits. In particular, E has coequalizers, coproducts, and an initial
object 0.

(3) Pullbacks of epic arrows are epic.

(4) Every arrow of the form AÑ 0 is an isomorphism.

3.4 The internal logic of a topos

As it will turn out, every SubpAq in E is a Heyting algebra. This essentially says that
the internal logic of E is intuitionistic. A paraphrasing of the proof found in [13] IV.§6
follows, as it is an instructive illustration of the properties listed in Theorem 3.11.

Lemma 3.12. If m : U Ñ A is a monic arrow in E, then

U A Ωm
chpmq

trueA

is an equalizer diagram, where trueA “ true! : A Ñ 1 Ñ Ω. In other words, every
monic arrow in E is an equalizer.

8In a previous footnote, an alternative definition was given for powerobjects which did not require
the presence of a subobject classifier. Actually, the presence of powerobjects and a terminal object
implies the presence of a subobject classifier, namely Ω “ Pp1q. This simplifies the definition of topos
even further.
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Given an arrow f : AÑ B, call a monic arrow m : M Ñ B the image of f if f factors
through m and m factors through any other monic n : N Ñ B that f factors through.
If m is the image of f , one writes M “ f”A and m “ imgpf q, as in the following
diagram.

A f”A B

N

f

imgpf q

n

One should verify for themself that this indeed captures the notion of image for sets.
By monicity of n, such a factorization is unique.

Corollary 3.13. (to Theorem 3.11) Let f : AÑ B be an arrow in E. There exists
a monic m : M Ñ B and an epic h : A Ñ M such that m is the image of f and
f “ mh.

Proof. Dual to the notion of pullback is that of pushforward, the colimit of a diagram
of the form ‚ ÐÝ ‚ ÝÑ ‚. By 3.11.(3), E has all pushforwards, and in particular there
is a pushforward diagram

B D

A B

q1

f

f

q2

in E. Toposes have equalizers, so there is an equalizer diagram

M B Dm
q1

q2

also in E. Now, since pA, f q is a cone for the right hand side of the equalizer diagram,
there is a unique arrow h : AÑ M such that mh “ f . This gives a factorization of f .

It is routine to check that equalizers are always monic, in particular m. Thus, to
see that m is the image of f , it suffices to check its universal mapping property. Let
f “ nk : AÑ N Ñ B for some monic n. By Lemma 3.12, n is an equalizer, say of the
pair x1, x2 : B Ñ D1. We have

x1f “ x1nk “ x2nk “ x2f,
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so by the universal property of pushouts, there is a unique u : D Ñ D1 such that
uqi “ xi, i “ 1, 2. Moreover,

x1m “ uq1m “ uq2m “ x2m,

so by the universal property of equalizers, m factors through n. This shows that m is
the image of f .

To see that h is epic, first observe that f is epic if and only if m is an isomorphism.
Indeed, if m is an isomorphism, then q1 “ m´1mq1 “ m´1mq2 “ q2, which by the
universal property of pushouts is eqivalent to the statement that f is epic (if f is epic,
then D “ B and q1 “ q2 “ idB).

Next, apply the above factorization to h, say h “ nk : AÑ N Ñ M with n monic. In
light of Theorem 3.11.(1), it suffices to show that n is epic. Now, since mn is monic
(any composition of monics is also monic) and pmnqk “ f , by the universal mapping
property for images there is a unique t : M Ñ N such that m “ pmnqt. The monicity
of m then implies that idM “ nt, so that t is a right inverse to n. Any arrow with a
right inverse is epic, so n is epic.

Recall that a distributive lattice is a poset L with a top J and bottom K and two
associative, commutative binary operations ^,_ : L ˆ LÑ L such that a ^ b “ a if
and only if a ď b if and only if a _ b “ b, and a ^ pb _ cq “ pa ^ bq _ pa ^ cq.

Lemma 3.14. Given any object A of E, U, V Ď A, define U _ V to be the image of
the unique map U \ V Ñ A which restricts to the inclusions U Ñ A, V Ñ A. The
operations ^, defined earlier, and _, as well as the identity idA and the initial object
0

?
ÝÑ A, give the poset SubpAq a distributive lattice structure with J “ idA and K “?.

Moreover, for any f : AÑ B, f´1 : SubpBq Ñ SubpAq preserves ^.

Proof. The arrows ? and idA are trivially monic. Since every monic into A factors
through idA, idA “ J. Moreover, since ? factors through every monic into A, ? “ K.

Any monic V Ñ U that factors through U Ñ A turns the diagram

V A

V U

idV

into a pullback diagram, so V ď U if and only if V ^U “ V . To see the corresponding
equation for _, observe that U ď V _U holds always, and that V _U factors through
U Ñ A if and only if there is a factorization of V _ U Ñ A through U Ñ A.
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Product and sum operations are always commutative, up to isomorphism, so ^ and _
are commutative.

It follows directly from the definition that \ is associative (up to isomorphism). To
see that _ is associative, let mU , mV , mW : U, V,W Ď A respectively, and consider
the following diagram.

pU _ V q _W A U _ pV _W q

pU _ V q \W U \ V \W U \ pV _W q

The inclusion W Ñ U \ V \W gives (by composition) an arrow W Ñ U _ pV _W q.
Since U _ V Ñ A is the image of the arrow rmU , mV s : U \ V Ñ A induced by mU

and mV , it factors through U _ pV _W q Ñ A. Together, W Ñ U _ pV _W q and
U \ V Ñ U _ pV _W q induce an arrow pU _ V q \W Ñ U _ pV _W q. This gives an
alternate factorization of pU _ V q \W Ñ A, so U _ pV _W q Ñ A factors through
pU _ V q _W Ñ A. Similarly, U _ pV _W q Ñ A factors through pU _ V q _W Ñ A.
By uniqueness of the arrows U _ pV _W q Ô pU _ V q _W , they are mutually inverse.

That ^ is distributive follows from the second statement of the lemma. Indeed, if m :

U Ñ A is a monic arrow, then m´1 : SubpBq Ñ SubpAq is given by m´1pV q “ U ^ V .
Whence, if m´1 is a lattice homomorphism, then

U ^ pV _W q “ m´1pV _W qm´1pV q _m´1pW q “ pU ^ V q _ pU ^W q.

So let f : AÑ B. To see that f´1 preserves ^, consider the following commutative
cube

A B

f´1V V

f´1U U

f´1V ^ f´1U U ^ V

f

in which the dashed arrow is the arrow induced by the pullback that is its right-hand
face. Every face of the cube but those adjacent to the dashed arrow are pullbacks by
definition. Verifying that the bottom face is a pullback is routine.
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One notable property of the subobject relation is its stability: Not only is the subobject
relation transitive, but it respects ^ and _. In other words, if U and V are subobjects
of B and B is a subobject of A, then the intersection U ^ V of U and V as subobjects
of B is equal to the intersection U ^ V in A. In particular, the following is a pullback
diagram for any U, V Ď A.

U U _ V

U ^ V V

Actually, if U ^ V “ 0, this is also a pushforward diagram, so that U _ V – U \ V .
Note also that this gives a direct relationship between _ and ^ without any explicit
reference to A whatsoever.

An alternate proof of the equation f´1pU ^ V q “ f´1U ^ f´1V can be obtained from
Theorem 2.14 and the next lemma.

Lemma 3.15. Let A and B be objects of E and f : AÑ B. Thought of as a functor,
f´1 : SubpBq Ñ SubpAq has a left adjoint Df : SubpAq Ñ SubpBq.

Proof. The left adjoint is defined as follows: Let m : U Ñ A be monic. Then
DfU : f”U Ñ B is defined to be the image of fm : U Ñ B. A routine calculation
verifies that Df is monic. To see that Df % f´1, one shows that f”U Ñ B factors
through a subobject V if and only if U Ñ A factors through f´1V Ñ A. The forward
implication is obtained from the universal mapping property for pullbacks, and the
backward direction is obtained from the universal mapping property for images.

Since Subp´q is represented by Ω, the distributive lattice structure of SubpAq can be
represented internally in E: Recall the natural isomorphism Homp´,ΩqˆHomp´,Ωq –

Homp´,Ω ˆ Ωq. Since every natural transformation Homp´,Ω ˆ Ωq Ñ Homp´,Ωq is
of the form f˚ for some f : Ω ˆ Ω Ñ Ω, the operations ^ and _ are given by unique
arrows ^,_ : Ω ˆ Ω Ñ Ω. Moreover, it follows from naturality that the following
diagrams commute.

Ω ˆ Ω ˆ Ω Ω ˆ Ω

Ω ˆ Ω Ω

π1ˆ^

^ˆπ3 ^

^

Ω ˆ Ω ˆ Ω Ω ˆ Ω

Ω ˆ Ω Ω

π1ˆ_

_ˆπ3 _

_
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The two diagrams above indicate associativity.

Ω ˆ Ω ˆ Ω Ω ˆ Ω

Ω ˆ Ω ˆ Ω ˆ Ω Ω

π1ˆ_

pπ1ˆπ2,π1ˆπ3q ^

^p_ˆ_q

This last diagram expresses distributivity. Similar diagrams express the remaining
definitive properties of a lattice, and the object Ω is said to be an internal lattice of E
because they a commute. In fact, in a topos, Ω is much more than a mere lattice.

Lemma 3.16. In E, the distributive lattice Subp1q is a Heyting algebra.

Proof. It suffices to show that for any U Ď 1, U ^ p´q has a right adjoint. This is
constructed as follows. First, observe that for any object W , W Ď 1 if and only if
|HompA,W q| ď 1 for every A. Given V Ď 1, the evaluation map ε : U ˆ V U Ñ V is
the unique arrow between these objects. So, let i, j : AÑ UV for some object A. A
brief calculation reveals that π1 : U ˆ 1 Ñ U is an isomorphism. This leads to the
commutative diagram below.

U ˆ V U U

U ˆ A

ε

idU ˆa idU ˆb π1

By the universal mapping property for exponentials, a “ b. This makes V U Ď 1.

To see that U ^ p´q % p´qU , simply observe that U ^ V “ U ˆ V in Subp1q, since

U 1

U ˆ V V

is a pullback diagram.

The right adjoint to ^ in a Heyting algebra is always denoted ñ and called its
implication operator. To see that Ω is an internal Heyting algebra, ie. that it has an
implication operator ñ: Ω ˆ Ω Ñ Ω, a brief return to slice categories is convenient.

Theorem 3.17. For any object A in E, E {A is a topos.
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Proof (Sketch). Power objects and pullbacks in E {A are evidently computed in E, and
the terminal object in E {A is idA. This already shows that E {A has all finite limits
by Lemma 2.12.

The subobject classifier in E {A is actually π1 : A ˆ Ω Ñ A, with the “truth” arrow
being idAˆ true : A ˆ 1 Ñ A ˆ Ω. Of course, A ˆ 1 – A, so actually π1 : A ˆ 1 Ñ A

is terminal in E {A. To see that A ˆ Ω Ñ A is the subobject classifier, let m : U Ñ X

be a monic arrow factoring through an arrow a : X Ñ A in E {A. Since m corresponds
to the unique chpmq : X Ñ Ω, one constructs the arrow pa, chpmqq : X Ñ A ˆ Ω and
observes that the following diagram commutes.

X A ˆ Ω

A

U A ˆ 1

pa,chpaqq

a

m

u

pu,!q

idA ˆ true

A routine check verifies that the outer square is a pullback.

For example, Sets{A (and therefore also SetsA) is a topos for any set A.

One remarkable aspect of slice categories is the several ways in which the slice operation
is given functor structure CÑ Cat: Let f : AÑ B be any arrow in C. Then there is
a contravariant functor f˚ : C {B Ñ C {A defined by the pullback

A B

f˚X X

f

f˚b b

There are two other ways to turn C {p´q into a functor, whose relation to f˚ is recorded
in the following lemma.

Lemma 3.18. Let f : AÑ B in C. The pullback functor f˚ : C {B Ñ C {A has both
a left and a right adjoint,

ÿ

f

% f˚ %
ź

f

.

Returning to the issue at hand, since 1 “ idA in E {A, a monic arrow into 1 is simply
a subobject of A.
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Lemma 3.19. For any object A in E, the map

SubE {Ap1q Ñ SubEpAq,

which forgets the slice category structure, is a natural bijection in E.

To make sense of naturality in A, simply observe that the pullback operator f˚ readily
extends to a functor f˚ : E {B Ñ E {A.

Since SubE {Ap1q is a Heyting algebra, so is SubEpAq, for any A in E. Thus, the
implication operator for SubpAq corresponds via the Yoneda lemma to an implication
operator ñ: Ω ˆ Ω Ñ Ω in E. This concludes a proof of the main theorem of this
section.

Theorem 3.20. The object Ω is an internal Heyting algebra with top J “ true and
bottom K “ false, given in the following pullback diagram.

1 Ω

0 1

false

true

It is well-known to logicians that there is no material distinction between formulas and
the sets they define. In the topos theory literature, this is embodied by the equating
formulas with arrows into Ω. In fact, one can define a partial order, entailment, on
the arrows into Ω by setting

ϕ $ ψ if and only if ϕñ ψ “ true,

where ϕ ñ ψ “ pñq ˝ pϕ ˆ ψq, for any ϕ, ψ : A Ñ Ω. This partial order has the
notable property that if ϕ “ chpU Ď Aq and ψ “ chpV Ď Aq, then ϕ $ ψ if and only
if U ďA V . Furthermore, define ϕ ^ ψ “ ^ ˝ pϕ ˆ ψq and ϕ _ ψ “ _ ˝ pϕ ˆ ψq. A
calculation involving Lemma 3.5 is used to show that each of the diagrams below are
pullback diagrams.

A Ω

U ^ V 1

ϕ^ψ

true

A Ω

U _ V 1

ϕ_ψ

true

A Ω

U ñ V 1

ϕñψ

true

One can further define  ϕ “ ϕñ K, but an equivalent description of the operator  
is given by the observation that any arrow from 1, ie. any global element, is monic.
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Hence, false : 1 Ñ Ω is monic, so  can be defined as in the following pullback diagram.

Ω Ω

1 1

 

false true

In other words,  false “ true. Moreover, since both of the inner squares in the
diagram

1 Ω Ω

0 1 1

true  

false true

are pullbacks, so is the outer square. Whence, false “ chp? : 0 Ñ 1q “  true as well.

The other standard properties of Heyting algebras apply to the maps ^,_,ñ: ΩˆΩ Ñ

Ω and  : Ω Ñ Ω as well, including

x ď   x (1)

   x “  x (2)

 px ^ yq “  x ^  y (3)

px _ yq ñ z “ pxñ zq ^ py ñ zq, (4)

and so on, for any x, y, z : ‚ Ñ Ω.

3.5 Presheaves, Boolean toposes

One might wonder at this point whether the internal logic of a topos is actually
Boolean. In fact, this is rarely the case.

Lemma 3.21. Let C be any small category whatsoever. Then pC “ SetsC
op

is a topos.

Proof. In SetsC, limits (and colimits) are computed pointwise. That is, if P : I Ñ
SetsC and F : CÑ Sets, then

plim
ÐÝ

P qF “ lim
ÐÝ
pP ˝ F q,

where the first limit is taken in SetsC and the second limit is taken in Sets. The
category of sets is complete (and cocomplete), so this actually reveals that SetsC is
complete as well. In particular, SetsC has the constant functor ∆ptHuq (ie. ∆1) as
its terminal object. Replacing C with Cop, one obtains the stated result.

To construct the subobject classifier of pC, the following definition is helpful.

37



Definition 3.22. For an object C in a category, a sieve on C is a set S of arrows
such that

pf : AÑ Cq P S and pg : B Ñ Aq implies pf ˝ g P Sq.

Given a sieve S on C and an object B of C, define

SB “ tf P S | dompf q “ Bu.

Moreover, for an arrow f : AÑ B, define Spf q : SB Ñ SA by

Spf qphq “ hf.

This gives a contravariant functor structure to S.

By definition, for any sieve S on C , SB Ď pyCqB. This suggests that S Ď yC in pC,
which is indeed the case. A short calculation verifies that the diagram

SA HompA,Cq

SB HompB,Cq

Ď

Spf q

Ď

f˚

commutes, and a natural transformation of functors into Sets is monic if and only if
every member of its family of functions is injective. The converse holds as well: Every
subfunctor (subobject) S of yC defines a sieve for C , the set

tf | pDBqpf P SBqu,

also denoted S. Subfunctors of yC and sieves on C are henceforth referred to inter-
changeably.

It is worthwhile to untangle the definition of subfunctor, in particular to uncover the
following observation: Given a pair of presheaves U Ď F , there is no harm in assuming
that UA Ď FA for any object A. Thus, since the inclusion UA ãÑ FA is natural,
given any arrow f : B Ñ A the function F pf q : FA Ñ FB restricts to the function
U pf q : UAÑ UB. In other words, the image of UA under F pf q is contained in UB.

Proof of Lemma 3.21 (continued). For each object C of C, let ΩC denote the set of
sieves on C . Given f : C 1 Ñ C , define Ωpf q : ΩC Ñ ΩC 1 as follows: Using the fact
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that pC is complete, form the following pullback diagram.

S Homp´, Cq

f ˚ S Homp´, C 1q

Ď

Ď

f˚

One can check that, in fact,

f ˚ S “ th : ‚ Ñ C | f ˝ h P Su.

That the set f ˚ S is a sieve on C can be seen in two ways: On the one hand, the
pullback of monic arrows is monic. More concretely, if g : B Ñ A, h : A Ñ C , and
h P f ˚ S (ie. fh P S), then pfhqg P S because S is a sieve on C 1, and therefore
hg P f ˚ S. The definition Ωpf qpSq “ f ˚ S gives a presheaf structure to Ω.

As the notation suggests, Ω : Cop Ñ Sets is the subobject classifier of pC. Let
true : 1 Ñ Ω be the natural transformation defined at each object C by

H ÞÝÑ yC “ tf | pDB P objpCqqpf : B Ñ Cqu.

The presheaf yC is trivially a sieve, and is in fact the maximal sieve on C . For any
presheaf F : Cop Ñ Sets, U Ď F , and object C of C, let chpU qC : FC Ñ ΩC be the
function defined

chpU qCpsq “ tf | pDC
1qpf : C 1 Ñ C and F pf qpsq P UC 1qu.

Indeed, chpU qCpsq is a sieve on C , for if pf : C 1 Ñ Cq P chpU qCpsq and h : B Ñ C 1,
then

F pfhqpsq “ F phq ˝ F pf qpsq “ F phqpF pf qpsqq “ U phqpF pf qpsqq P UB,

since F pf qpsq P UC 1.

The following diagram is a pullback in Sets.

FC ΩC

UC 1

chpUqC

Ď

!

true

To check this, it suffices to verify that chpU qCpsq “ yC if and only if s P UC . The
reverse direction is by definition. For the forward direction, apply the definition of
chpU qCpsq to the arrow idC .

39



The power objects in pC are slightly harder to find: Assuming they exist,

PpF qC – HompyC,PpF qq – HompyC ˆ F,Ωq – SubpyC ˆ F q

for any object C of C. This motivates the definition

PpF q “ Subpyp´q ˆ F q.

Since y and F ˆ p´q are covariant and Subp´q is contravariant, this defines a con-
travariant functor P into Sets.

The evaluation map ε : F ˆ PpF q Ñ Ω is defined by the equation

εCps, U q “ chpU qCpidC , sq

for each C P objpCq, U Ď yC ˆ F , and s P FC . Verifying that this defines an
evaluation map is routine.

Consider the topos pP of presheaves on a poset P. A sieve on a point p P P is a
downward closed subset of Ó ppq, and a subfunctor F Ď 1 in pP is given uniquely by
the sieve of points q for which Fq “ 1. Hence, the internal logic of pP is the Heyting
algebra ROpPq of sieves of downward closed subsets of P. Notice that this is often not
a Boolean algebra: For instance, if P is non-linear and bottomless9.

Definition 3.23. A topos is called Boolean if its internal logic is classical, ie. Subp1q

is a Boolean algebra and Ω is an internal Boolean algebra.

Although Boolean toposes are somewhat rare in reality, there is a well-known method
of producing Boolean toposes from non-Boolean toposes, called Booleanization. This
requires a whole new idea, explored in the next section. For now, the following lemma
(Proposition 1 from [13], VI.§3) provides a useful characterization of Boolean toposes.

Lemma 3.24. In a topos E, the following are equivalent.

(i) E is Boolean.

(ii) The negation operator  : Ω Ñ Ω satisies   “ idΩ.

(iii) For every A in E, SubpAq is a Boolean algebra.

(iv) For every U Ď A,  U _ U “ A.

(v) The map rtrue, falses : 1 ` 1 Ñ Ω is an isomorphism.
9For a concrete example, let P “ ta, b, cu with a, b ď c. Then   tbu in ROpPq is the set tb, cu,

which is not tbu.
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Proof. The equivalence between (i) and (ii) is well-documented, as well as the equiva-
lence of (iii) and (iv). Points (i) and (iii) are equivalent via an interchange of structure
between Subp´q and Homp´,Ωq. It therefore suffices to show that (iv) implies (v)
implies (ii), since (iv) implies (ii).

Assume (iv). Thinking of true and false : 1 Ñ Ω as subobjects of Ω, observe
that chptrue_ falseq “ chptrue_ falseq “ J. Thus, 1 _ 1 “ Ω. By definition,
true^ false “ K, so actually rtrue, falses is a monic arrow into Ω representing the
subobject true_ false “ J. This makes rtrue, falses an isomorphism.

Assuming (v), 1\1 is a subobject classifier equipped with the arrow h˝true : 1 Ñ 1\1,
where h : Ω – 1 \ 1 is the inverse of rtrue, falses. The negation operator on 1 \ 1 is
then

 1 “ h ˝  ˝ rtrue, falses “ h ˝ r true, falses “ h ˝ rfalse, trues.

Whence,

 1˝ 1 “ ph˝ ˝rtrue, falsesq˝ph˝rfalse, truesq “ h˝ ˝rfalse, trues “ h˝rtrue, falses “ id1\1 .

Since h is an isomorphism, this makes   “ idΩ.

4 The construction of ShpP,  q

As was stated at the end of the previous section, few toposes are Boolean. However,
every topos contains a Boolean topos as a full subcategory Sh  pEq, which is maximal
in the sense that the inclusion functor i : Sh  pEq Ñ E has a left adjoint

a : EÑ Sh  pEq.

The category Sh  pEq is the full subcategory of what are called sheaves for   in E,
and the functor a is called the sheafification functor. What exactly all of this means
is essentially what will be recorded in this section.

4.1 Sheaves

Sheaves are best understood when observed from multiple perspectives. Possibly the
quickest route is via modal logic.

As was observed in the previous section, toposes interpret intuitionistic propositional
logic in the sense that arrows into Ω form a Heyting algebra. Modalities are traditionally
given by unary operators on formulas. In the internal logic of a topos, then, modalities
are simply arrows of the form Ω Ñ Ω. The sort of modality that is of interest in
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the Booleanization process is inspired by the Gödel-Gentzen embedding (or, perhaps,
Glivenko’s theorem) of classical logic into intuitionistic logic.

Definition 4.1. In a topos E whose subobject classifier is Ω, an arrow j : Ω Ñ Ω is
called a Lawvere-Tierney modality (L-T modality) if

jj “ j, j ˝ true “ true, and j ˝ ^ “ ^pj ˆ jq.

Lemma 4.2. The double-negation operator   : Ω Ñ Ω in E is a L-T topology.

Proof. Recall the properties (1)-(4) of Heyting algebras stated at the end of §3.4.

Every arrow j : Ω Ñ Ω induces a closure operation U ÞÑ U on SubpAq for every
A, defined by chpU q “ j ˝ chpU q. Translating the definition of L-T modality into
properties of the closure operation, one sees that U ÞÑ U satisfies

U “ U, U Ď U, and U ^ V “ U ^ V

if and only if j is a L-T modality.

Given a L-T modality whose closure operation is p´q, Call a monic U Ď A closed if
U “ U and dense if U “ A. This terminology applies equally well to the subobjects if
their associated monics are clear.

Definition 4.3. Let j be a L-T modality in E. An object X of E is called a sheaf
(for j) if for any dense m : U Ñ A, every arrow x : U Ñ X extends to a unique arrow
x̄ : AÑ X , as in the following commutative diagram

U A

X

m

x
x̄

The category ShjpEq is then the full subcategory of E consisting of the sheaves for j.

The objects of Sh  pEq are called   -sheaves or double-negation sheaves.

Notice that an immediate consequence of the definition is that the terminal object
1 of E is a sheaf, since for every morphism U Ñ X whatseoever, the terminal arrow
! : U Ñ 1 extends to the unique terminal arrow ! : X Ñ 1. This means that ShjpEq
and E have the same temrinal object.
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4.2 Grothendieck Topologies

Sheaves for a L-T modality in a topos of the form pC also have a different form, given
by something called a Grothendieck topology for C. Starting with a L-T modality
j : Ω Ñ Ω in pC, its corresponding Grothendieck topology is given by the functor
J : Cop Ñ Sets defined by

JC “ tS P ΩC | jCpSq “ yCu,

and for an arrow f : C Ñ C 1,

Jpf qpS P JC 1q “ f ˚ S,

which is well-defined by the naturality of j. Loosely, j determines a selection of sieves
on each object of C. These will be called covering sieves of C , and one says that a
sieve S covers C if S P JC .

Lemma 4.4. The functor J satisfies the following three properties.

(G1) For any object C of C, yC P JC.

(G2) If S P JC and f : D Ñ C, then f ˚ S P JD.

(G3) If S P JC and R and sieve on C such that f ˚ R P JD for any f : D Ñ C in S,
then R P JC.

Proof. (G1) follows from j ˝ true “ true, since trueC : 1 Ñ ΩC is the maximal sieve
for any C .

(G2) is a triviality due to the naturality of j and the fact that J is a subfunctor of Ω.

To see that (G3) holds, let S and R be as described. By definition of J , for any
f : D Ñ C one has f ˚ pjCpRqq “ jDpf ˚ Rq “ yD by assumption. This puts
idD P f ˚ pjCpRqq, or equivalently f P jCpRq. This makes S Ď jCpRq. Now, since
j ˝ ^ “ ^ ˝ pj ˆ jq, j commutes with intersections of sieves. In particular,

jCpSq “ jCpS X jCpRqq “ jCpSq X jCjCpRq “ jCpSq X jCpRq,

so that
jCpRq Ď yC Ď jCpSq Ď jCpRq.

Thus, R P JC .

Subfunctors of Ω satisfying (G1)-(G3) are generally called Grothendieck topologies for
the category C, and essentially all of classical sheaf theory can be deduced from these
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three properties. Moreover, every Grothendieck topology for C corresponds to a L-T
modality in pC, and the two correspondances are inverse to one another. This makes
the notion of a L-T modality a direct generalization of Grothendieck topologies, as
L-T modalities are defined for arbitrary toposes.

Lemma 4.5. Let j : Ω Ñ Ω be a L-T topology in pC, J its corresponding Grothendieck
topology, and F and object in pC. Then F is a sheaf for j if and only if for every
object C of C and any covering sieve S for C, every natural transformation x : S Ñ F

extends to a unique natural transformation yC Ñ F , as in

S yC

F

Ď

x
x̄

Proof. Suppose F is a sheaf for j. By the universal mapping property for sheaves, it
suffices to show that S is dense in yC . Starting with the characteristic function for S
in yC , compute

chpSqCph : S Ñ Sq “ tf | pDC 1qpf : C 1 Ñ C and pyCqpf qphq P SC 1qu

“ tf | pDC 1qpf : C 1 Ñ C and f˚phq P SC 1qu

“ tf | pDC 1qpf : C 1 Ñ C and h ˝ f P SC 1qu

“ tf | h ˝ f P Su

“ h ˚ S.

Hence,

chpSqCphq “ jC ˝ chpSqCphq “ jCph ˚ Sq “ h ˚ jCpSq “ yC “ true ˝!phq,

so that S “ yC .

In the converse direction, the goal is to associate each element r P XC with a natural
transformation σprq from some covering sieve of C into F in such a way that if r P UC ,
then the extended natural transformation σprq : yC Ñ F corresponds via the Yoneda
lemma to the element xCprq.

To start, observe that

XC “ UC “ tr | jC chpU qCprq “ trueprq “ yCu “ tr | chpU qCprq P JCu

since U is dense in X . This makes chpU qCprq a covering sieve for C , for any r P XC .
Next define the natural transformation σprq : chpU qCprq Ñ F given by

σ
prq
C 1 pf : C 1 Ñ Cq “ xC 1 ˝Xpf qprq.

44



Verifying that σprq is a natural transformation is a routine calculation. By assumption,
now, σprq extends to a unique natural transformation σprq : yC Ñ F , which via the
Yoneda lemma corresponds to a unique element x̄Cprq P FC . This also shows that, if
x̄ is the desired natural transformation, then x̄ is unique.

That defining x̄ : X Ñ F this way produces the desired natural transformation can be
seen as follows. To show naturality, recall the naturality of the isomorphism appearing
in the Yoneda lemma, ΦC : HompyC, F q – F . For any g : C 1 Ñ C , one has

F pgq ˝ x̄Cprq “ F pgq ˝ ΦC

´

σprq
¯

“ ΦC 1 ˝ ypgq
˚
´

σprq
¯

“ ΦC 1

´

σprq ˝ ypgq
¯

,

and also
x̄C 1 ˝Xpgqprq “ ΦC 1

´

σpXpgqprqq
¯

.

Thus, to show naturality, it suffices to show that σpXpgqprqq “ σprq ˝ ypgq. This follows
from the calculation

σXpgqprqphq “ x ˝Xphq ˝Xpgqprq “ x ˝Xpghqprq “ σprqpghq “ σprq ˝ ypgqprq.

The inverse to ΦC is given by the isomorphism ΨC : FC Ñ HompyC, F q defined by

ΨCpsqC 1ph : C 1 Ñ Cq “ F phqpsq.

Turning the definition of x̄ inside-out,

ΨCpxCprqqC 1phq “ F phq ˝ xCprq

“ xC 1 ˝ U phqprq

“ xC 1 ˝Xphqprq

“ σ
prq
C 1 phq

“ σ
prq
C 1 phq.

Hence,

xCprq “ ΦC

ˆ

σ
prq
C 1 phq

˙

“ x̄Cprq.

Presheaves that satisfy the latter condition for an arbitrary Grothendieck topology J
are said to be sheaves (for J), and this is in fact a more common definition of the term.
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The category of sheaves in pC for a given Grothendieck topology J on C is denoted
ShpC, Jq. In the case where J is given by the L-T modality j, the previous lemma
says that ShjppCq “ ShpC, Jq.

Consider again the   modality. A clear description of the covering sieves in its
corresponding Grothendieck topology, called the dense topology, will play a role in the
next section. In this document, the dense topology will only appear in the context of
partially ordered sets, so it helps to understand at least these first.

Fix a partially ordered set P. A sieve for an element p in P is a downward-closed
subset of Ó ppq, so the subobject classifier Ω for pP simply collects the downward closed
subsets. As was already observed, the characteristic function of a monic m : U Ñ F

in pP is a natural transformation chpU q : F Ñ Ω of the form

chpU qpps P F ppqq “ tq ď p | sæq P U ppqu,

where sæq “ F pq ď pqpsq. Now, as one should verify for themself,

Ωpq ď pqpS P Ωppqq “ Sæq “ tr P S | r ď qu,

and falseppHq “ H P Ωppq. This gives, for each monic m : U Ñ F , the identity

 ppS P Ωppqq “ chpfalseqppSq “ tq ď p | Sæq P tHuu “ tq ď p |  pDr ď qqpr P Squ.

Thus, the double-negation modality is given by the identity

  ppSq “ tr ď p | tq ď r |  pDr ď qqpr P Squ “ Hu,

or in other words,

q P   ppSq if and only if q ď p and p@r ď qqpDs ď rqps P Sq.

By definition, a sieve S covers p if and only if   ppSq “Ó ppq, which is the case if and
only if

p@r ď pqpDs ď rqps P Sq.

One calls a sieve S on p with this property dense below p. Letting   be the
Grothendieck topology given by

  ppq “ tS ĎÓ ppq | S is dense below pu,

one has Sh  ppCq “ ShpP,  q.
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4.3 Sheaves form a topos

The next goal is prove the following reslt.

Theorem 4.6. For any L-T modality j : Ω Ñ Ω in the topos E “ pC, ShjpEq is a
topos. Equivalently, if J is the corresponding Grothendieck topology, ShpC, Jq is a
topos.

This will be done in a pair of lemmas.

Lemma 4.7. The category ShpC, Jq is complete.

Proof. Let P : IÑ ShpC, Jq be a functor from a small category. It follows from the
fact that the inclusion functor i : ShpC, Jq Ñ E is full and faithful that, if L – lim

ÝÑ
P ,

then
ipLq – lim

ÝÑ
pi ˝ P q.

Hence, it suffices to show that if for every I P I the functor PI is a sheaf, then L

is a sheaf as well. This follows from the following computation: Let U be a dense
subobject of X in ShjpEq. Then, if L “ lim

ÝÑ
pi ˝ P q,

HomEpU, Lq “ HompU, lim
ÝÑ
pi ˝ P qq

– lim
ÝÑ

HompU, i ˝ P q

– HompX, lim
ÝÑ
pi ˝ P qq

“ HompX,Lq.

Hence, arrows of the form U Ñ L extend to arrows X Ñ L. This makes L a sheaf.

Notice that the above argument only used the completeness of pC. In other words, the
same argument shows that ShjpEq has finite limits for an arbitrary topos E.

Lemma 4.8. For any sheaves P and F in E, the object P F in E is a sheaf. Moreover,
P F is the exponential of P by F in ShjpEq.

Proof. Since U Ñ X is dense,

chpU ˆ F Ď X ˆ F q “ j ˝ chpU ˆ F q

“ j ˝ chpU q ˝ π1

“ chpidXq ˝ π1

“ trueXˆF ,
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so that U ˆ F Ñ X ˆ F is dense. Hence,

HomEpU, P
F q – HompU ˆ F, P q – HompX ˆ F, P q – HompX, P F q,

making P F a sheaf as well. Since i is full and faithful, i preserves exponentials.

Again, no mention of J or of C actually entered into the above argument, so ShjpEq
has exponentials as well.

In view of the previous two lemmas, ShjpEq is a topos for an arbitrary topos E.
In particular, ShpC,  q is a complete topos whose exponents match those of the
surrounding category pC. The subobject classifier, on the other hand, does not match.

Lemma 4.9. Let P Ď F in E, and assume F is a sheaf. Then P is a sheaf if and
only if P is closed.

Proof. Suppose m : P Ñ F is a closed monic, U Ď X is a dense subobject, and
x : U Ñ P is any arrow. Since F is a sheaf, there is a unique y : X Ñ F such that

X F

U P

y

Ď

x

m

commutes. Since the image function Dy : SubpXq Ñ SubpF q is left adjoint to y´1 :

SubpF q Ñ SubpXq, U Ď y´1px”U q. Of course, the image x”U of U under x is a
subobject of P , so actually U Ď y´1pP q by monotonicity of y´1. The closure operation
is also monotone, so

X “ U Ď y´1pP q “ y´1pP q “ y´1pP q.

This implies that y actually factors through m, as X “ y´1pP q implies

trueX “ chpy´1pP qq ˝ idX “ chpP q ˝ y.

The factorization through m provides the desired x̄ : X Ñ P .

Conversely, assume P is a sheaf. Then, since P is dense in P , the monic idP : P Ñ P

extends to a unique arrow P Ñ P through which P Ñ P factors. This arrow, P Ñ P ,
is necessarily monic, so P “ P .

Thus, the subobject classifier of ShjpEq is the object in E that classifies the closed
subobjects of sheaves. A closed subobject P Ď F in E is precisely a monic for which
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the following diagram commutes.

F Ω

Ω

chpP q

chpP q
jidΩ

It is true, of course, that any arrow with this property factors uniquely through the
equalizer of j and idΩ. Let Ωj be such an object, and observe that since j ˝ true “

idΩ ˝ true, true factors through Ωj as well. The last statement corresponds to the
maximal sieve’s role as a covering sieve.

To see that Ωj is indeed a subobject classifier for ShjpEq requires the following
observation.

Lemma 4.10. Let m : U Ñ X be any dense monic. The map p´q˝Dm gives a natural
bijective correspondance between the closed subobjects of U and the closed subobjects of
X , written

ClSubpU q – ClSubpXq.

Proof. Let the dense monic mU : U Ñ X represent U Ď X . Making the action of the
map explicit, the forward direction of the correspondence is just the closure operator:
Since U Ď X , every subobject of U is also a subobject of X . Taking the closure of a
subobject of U in X gives,

V Ď U ÞÝÑ V Ď X.

In the reverse direction, one takes a closed subobject A Ď X and intersects it with U ,
giving the reverse map

U ^ AÐÝ [ A.

Note that this intersection is precisely the map m´1 since m is monic. To see that
this is well-defined, recall that the closure of U in U is simply U , and furthermore
that the closure of A is A, so that

chU
`

U ^ A
˘

“ j ˝ chU pU ^ Aq

“ j ˝ chXpU ^ Aq ˝mU

“ pj chXpU q ^ j chXpAqq ˝mU

“ pchXpXq ^ chXpAqq ˝mU

“ chU pU ^ Aq.
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Backward and then forward, one has

U ^ A “ U ^ A “ X ^ A “ A,

where the closure is taken in X . Forward and then backward, the computation

chU pU ^ V q “ chXpU ^ V q ˝mU

“ pchXpU q ˝mU q ^ pj ˝ chXpV q ˝mU q

“ pchU pU qq ^ pj chU pV qq

“ chpV q

reveals that
U ^ V “ V,

again where the closure is taken in X . This shows that the two maps are inverse to
one another, and are therefore bijections.

As was already pointed out, the universal mapping property for equalizers gives a
natural isomorphism

ClSubpU q – HompU,Ωjq.

Thus, an immediate corollary of the preceeding lemma is

HompU,Ωjq – ClSubpU q – ClSubpXq – HompX,Ωjq

for any closed subobject U Ď X . This proves that Ωj is a sheaf. Since Ωj classifies
closed subobjects, Ωj classifies subsheaves, subobjects in ShjpEq. This completes the
proof that ShjpEq is a topos with the subobject classifier Ωj , for arbitrary E. The
next step, however, is to understand how the various features of ShjpEq manifest in
ShpP,  q.

Limits in presheaf categories are computed pointwise, equalizers included. Thus, for
each object C of C,

ΩjC “ tS P ΩC | jCpSq “ idΩCpSqu “ tS P ΩC | jCpSq “ Su.

In other words, ΩjpCq consists of the closed sieves on C .

In the particular case where j “   , the set Ω  C is then the set of sieves on C for
which   S “ S. Generally, for any Heyting algebra H , the subalgebra tb |   b “ bu

in H is a Boolean subalgebra of H , and this applies to Ω  equally well. In other
words, ShpP,  q is a Boolean topos! In fact, ShpP,  q is notably similar to a
Boolean-valued model.
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Theorem 4.11. Let P be a poset. The category of double-negation sheaves ShpP,  q
on P is a Boolean topos with a natural numbers object.

The second statement in the theorem follows from Lemma 2.17 and the following
theorem.

Theorem 4.12. For any topos E and any L-T modality j : Ω Ñ Ω for E, the inclusion
of ShjpEq into E has a left adjoint

a : E Ô ShjpEq : i.

Furthermore, a preserves finite limits.

The classical case of the theorem, as in for E “ pC, is proven using a two-step process
called the double-plus construction. For a general topos, Lawvere outlines the process
in [17] as follows: Given an object A of E, first form the image of the composition

A ΩA ΩA
j ,

t¨u

(see the discussion immediately following Definition 5.1 for t¨u) where the latter map is
given by the exponential of the the arrow Ω Ñ Ωj obtained from factoring j. Call the
resulting subobject A`. Then, thinking of A` as a subobject of ΩA

j , define apAq “ A`.
The unit of the adjunction is then given by the composition AÑ A` Ď apAq.

5 Independence of the Continuum Hypothesis

In the previous section, ShpP,  q was shown to be a Boolean topos with a natural
numbers object. In the following section, various properties of P will be shown to
correspond to properties of ShpP,  q, in the usual forcing argument fashion. The
driving motivation for this endeavour will be a proof of the independence of the
continuum hypothesis, recorded in the current section, which will roughly follow the
beautiful exposition in chapter VI of [13]. The continuum hypothesis is stated for
toposes as follows.

Definition 5.1. Let E be a topos with a natural numbers object N . Then E is
said to violate the continuum hypothesis, or satisfy  CH , if there is an object A in E
such that N Ď A Ď ΩN and there are no epimorphisms in E of the form AÑ ΩN or
N Ñ A.
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5.1 Inequalitities in toposes

For any object A in a topos, there is a canonical monic arrow t¨u : AÑ ΩA induced
by the arrow trueAˆA, as in

A ˆ ΩA Ω

A ˆ A

P

idA ˆt¨u
trueAˆA

Here, the arrow P is the evaluation map for the exponential ΩA. To understand the
notation, observe that in Sets, P is the usual membership relation and t¨u is the
function a ÞÑ tau Ď A. This shows that N Ď ΩN . To see that a strict inequality holds
(in fact to show that this sort of strict containment holds in general) it is convenient
to introduce the following construction, which can be performed in any topos E.

For any A Ď B in E, let EpipA,Bq denote the class of epimorphisms of the form
A Ñ B. The key property of EpipA,Bq, as an object of Sets, is that EpipA,Bq – 0

entails A ă B. However, EpipA,Bq is not often an object E knows much about, in
the sense that EpipA,Bq is not an object of the category. On the other hand, one is
able to construct an analogous subobject epipA,Bq Ď BA in E with the property that
epipA,Bq – 0 implies EpipA,Bq “ H. Toward this end, define

IX : HompX,BAq Ñ HompX,ΩBq

by setting
IXpf q “ trB ˝ ch ˝ imgptrApf q, π2q,

where trA : HompX,BAq – HompAˆX,Bq and trB : HompB ˆX,Ωq – HompX,ΩBq

and imgpπ1, trApf qq is the image of the map ptrApf q, π2q. A diagrammatic expression
of the map IX can be given, as well:

HompA ˆX,Bq HompA ˆX,B ˆXq SubpB ˆXq

HompX,BAq HompX,ΩBq HompB ˆX,Ωq

p´,π2q img

––

I
–

Given either definition of the natural transformation I , the Yoneda lemma provides a
unique arrow ` : BA Ñ ΩB such that I “ `˚. In Sets, IXpf q is the function

x ÞÝÑ tb P B | pDa P Aqpf pxqpaq “ bqu,
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and the function ` is the unique map such that

` ˝ f “ IXpf q.

In the case where X “ 1, an arrow f : 1 Ñ BA is given uniquely by the element
y “ f pHq of BA. It follows that ` is the map

py : AÑ Bq ÞÝÑ tb P B | pDa P Aqpypaq “ bqu “ imgpyq.

Now define epipA,Bq to be the pullback of ` and rBs, where

trprBsq “ trueB : B – B ˆ 1 Ñ Ω,

as in the pullback diagram

BA ΩB

epipA,Bq 1

`

!

rBs

In Sets, rBs pHq “ B P 2B , so the pullback of ` and rBs is precisely the set EpipA,Bq

of functions y : A Ñ B such that imgpyq “ `pyq “ rBs ˝!pyq “ B. Note also that
gluing pullback diagrams together yeilds

BA ΩB Ω

epipA,Bq 1 1

` chprBsq

!

rBs true

The outer rectangle is then a pullback square, so

chpepipA,Bqq “ chprBsq ˝ `.

The following calculation provides the key property of epipA,Bq, that it provides a
sort of classifier for “parameterized families” of epic arrows: For any h : X Ñ BA,

trAphq : A ˆX Ñ B is epic if and only if ptrphq, π2q is epic,

if and only if imgptrphq, π2q “ B ˆX,

if and only if chpimgptrphq, π2qq “ trueBˆX ,

if and only if trBpchpimgptrphq, π2qqq “ rBs ˝!X .

In other words, an arrow h : X Ñ BA factors through epipA,Bq if and only if trAphq

is epic. This has as a special case one of the intuitive properties of EpipA,Bq.
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Lemma 5.2. In a topos E with objects A and B, if 1 fl 0 and epipA,Bq – 0, then
EpipA,Bq “ H.

It is necessary to first observe that any arrow 1 Ñ 0 is an isomorphism10. Indeed,
0 Ñ 1 and 0 Ñ 0 are unique, so 0 Ñ 1 Ñ 0 is the identity arrow for 0. And in reverse,
the arrow 1 Ñ 1 is unique, so 1 Ñ 0 Ñ 1 is the identity.

Any topos with the property 1 fl 0 is called nondegenerate. Of course, 1 and 0 in
ShpP,  q are not isomorphic, so ShpP,  q is nondegenerate.

Proof. Suppose epipA,Bq – 0. It suffices to show that EpipA ˆ 1, Bq “ H. Since an
epic arrow h : A ˆ 1 Ñ B induces an arrow f “ trAphq : 1 Ñ BA that factors through
epipA,Bq, f factors through 0. However, dompf q “ 1, so this would provide an arrow
1 Ñ 0. By assumption, 1 fl 0, so no such epic exists.

In a nondegenerate topos, define the relation ă on objects of E so that A ă B if
and only if A Ď B and epipA,Bq – 0. An even stronger violation of the continuum
hypothesis might then be the condition that there is an object A of E such that
N ă A ă ΩN . Observe that this is indeed a stonger condition by Lemma 5.2.

Lemma 5.3. Recall the functor a∆ : Sets Ñ ShpP,  q. For any sets A and B,
EpipA,Bq “ H if epipa∆A, a∆Bq – 0.

Proof. By the previous lemma, epipa∆A, a∆Bq – 0 implies Epipa∆A, a∆Bq “ H.
Thus, the desired equation follows from the observation that a preserves colimits and
therefore epimorphisms, as well as the observation that identifying functions AÑ B

with natural transformations ∆AÑ ∆B yields EpipA,Bq “ Epip∆A,∆Bq. In other
words, if Epipa∆A, a∆Bq “ H, then EpipA,Bq “ H.

This is nice, but the converse is really the useful result. The converse only actually
holds under certain circumstances, and will play into how one should choose the correct
poset for violating CH . Before this poset is chosen, however, a few lemmas are needed.

Lemma 5.4. Let h : A Ñ B be an epic arrow in E, and X be any object. The
eponentiated arrow hX : AX Ñ BX restricts to an arrow epipX,Aq Ñ epipX,Bq.

Proof. Let m : epipX,Aq Ď XX . Recall that hX is defined to be the unique arrow for
10In fact, a stronger statement holds: Any arrow of the form AÑ 0 is an isomorphism in a topos.

Recall Theorem 3.11.(4).
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which the diagram
X ˆ BX Z

X ˆ AX A

εB

idX ˆh
X

εY

h

commutes. Gluing this diagram to the triangle

X ˆ AX A

X ˆ epipX,Aq

εY

idX ˆm trX pmq

reveals the equation

trXph
Xmq “ hεApidˆmq “ h ˝ trXpmq.

Since m trivially factors through epipX,Aq, trXpmq is epic, and therefore so is h ˝
trXpmq. This implies that trXph

Xmq is epic, or equivalently that hX ˝ m factors
through epipX,Bq.

Lemma 5.5. In a Boolean topos, if A ă B ď C and there is at least one arrow
1 Ñ B, then A ă C.

Proof. Write m : B Ď C . Since the ambient topos is Boolean, B_ B “ C in SubpCq.
Equating C with B _ B generally, one obtains an arrow r : C Ñ Z via the universal
mapping property for coproducts, as in

Z

Z C  Zm

id r
x˝!

Since rm “ id, r is epic. By the previous lemma, rA : BA Ñ CA restricts to an arrow
of the form

epipA,Cq Ñ epipA,Bq.

It follows from Theorem 3.11.(4) that since epipA,Bq – 0, one has epipA,Cq – 0 as
well.
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It has already been shown that ShpP,  q is a Boolean topos. It is not true, however,
that a nonzero sheaf admits an arrow from 1: It could be the case that a nonzero
sheaf is only at some indices nonempty. This is fortunately not so for locally constant
sheaves, sheaves of the form a∆pXq for some set X , for a nonempty set X gives rise to
a nonzero global element 1 Ñ ∆pXq that is sent via a to a global element 1 Ñ a∆pXq.

5.2 The Cohen Topos

The rest of the desired properties of ShpP,  q follow from specific combinatorial
properties of P. Thus, to pick the correct P finally involves a little inspiration from
Cohen. Let κ be a cardinal strictly larger than the continuum 2N. Recall the Cohen
poset (for κ), the set of functions

Pκ “ tf | pDA Ď κ ˆ Nqp|A| ă N and f : AÑ 2qu,

ordered by reverse inclusion, ie. f ď g in Pκ if and only if g Ď f , or equivalently

dompgq Ď dompf q and fædompgq “ g.

The Cohen topos (for κ) is then defined to be the topos ShpPκ,  q.

Theorem 5.6. The Cohen topos satisfies the following properties.

(a) The Cohen topos is a Boolean topos.

(b) The object a∆pNq is a natural numbers object in the Cohen topos.

(c) The Cohen topos is generated by the representable presheaves, ie. for any pair
of arrows f, g : F Ñ G, f ‰ g if and only if there is a p P P and an arrow
x : ypÑ F such that fx ‰ gx. In fancier words, the points from representables
seperate arrows.

(d) In the Cohen topos for κ,

a∆pNq ă a∆p2Nq ă Ωa∆pNq
  .

Properties (a) and (b) have already been established. The objective will soon be to
prove (d), but toward this end (c) is actually a necessary step.

In order to see that (c) holds, recall that pP is the cocompletion of C, or equivalently,
every presheaf is a colimit of representable presheaves, meaning that every arrow
between presheaves is determined by a morphism of cones of representable presheaves.
It should be clear that this statement implies that representable presheaves always
generate their presheaf categories. Hence, in order to see that (c) holds, it suffices to
show the following.
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Lemma 5.7. Every representable presheaf is a sheaf in the Cohen topos.

Proof. Let S be a sieve dense below g P Pκ, let f P Pκ, and let S Ñ ypf q be a
natural transformation. It suffices to show that Ó pgq ĎÓ pf q, or equivalently g ď f .
Since Sphq Ñ ypf qh “ Homph, f q is a function in Sets for every h P Pκ, Sphq ‰ H
implies h ď f for every h. This says that S Ď yf “Ó pf q. To see that g ď f , let
pα, nq P dompf q and suppose for a contradiction that there were an extension g1 ď g

such that g1pα, nq ‰ f pα, nq. Then, by density of S, there is a h P S extending g1 and
by virtue of being in S also extends f . This would give g1pα, nq “ hpα, nq “ f pα, nq,
which is impossible.

Observe that the category xPκ contains every possible piecing-together of a partial
function whose finite approximations exist in P. That’s a lot! And they are not
interrelated in any controlled way. To lasso the pieces that make up functions whose
“domain” is the “entire set” κˆN (really, these will be arrows from the locally constant
sheaf at κ ˆ N) is essentially the idea behind isolating the double-negation sheaves in
xPκ, since the double-negation topology demands density from its sieves.

The next question is how to obtain a monic arrow a∆pκq Ñ Ωa∆pNq
  from P. This

essentially consists of a locally consistent choice of subsets of κ ˆ N, for which there
are really just two choices. Following [13], set

Apf q “ tpα, nq P dompf q | f pα, nq “ 0u.

If f ď g, Apgq Ď Apf q, so indeed A Ď ∆pκ ˆ Nq “ ∆pκq ˆ ∆pNq as a functor. This
immediately induces the characteristic arrow chpAq : ∆pκq ˆ∆pNq Ñ Ω.

Lemma 5.8. The subobject A Ď ∆pκ ˆ Nq is double-negation closed.

Proof. It has already been shown that A Ď   A. To prove the reverse containment,
let pα, nq R Apf q for some f P Pκ. Then either pα, nq R dompf q or f pα, nq “ 1. In
either case, one can easily extend f to a function f 1 such that f 1pα, nq “ 1. In other
words, pα, nq R   Apf q.

Now, since Ω  classifies closed subobjects, chpAq : ∆pκqˆ∆pNq Ñ Ω factors through
Ω  . Define γ “ trpchpAqq : ∆pκq Ñ Ω∆pNq

  .

Lemma 5.9. The arrow γ is monic.

Proof. Given α ‰ β in κ, the claim is that

γf pαq ‰ γf pβq P
´

Ω∆pNq
  

¯

pf q “ Hompyf ˆ∆pNq,Ω  q.
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The explicit calculation of γf p´q goes as follows: For any g ď f and n P N,

γf pαqpg, nq “ εf pidNˆγf qpn, αq “ chpAqf pα, nq “ tq ď f | qpα, nq “ 0u.

Hence, since the domain of f is infinite, there is an n0 P N such that pα, n0q, pβ, n0q R

dompf q. This allows for an extension f 1 of f such that f 1pα, n0q ‰ f 1pβ, n0q, implying
γf pαq ‰ γf pβq.

Since a preserves finite limits, a preserves monics. Thus, the previous lemma implies
that a∆pκq Ď a

`

Ω∆pNq
  

˘

. In fact, the latter object is precisely the “continuum” in the
Cohen topos: Observe that the Yoneda lemma in conjunction with the calculation

HompX,Ωa∆pNq
  q – HompapXq,Ωa∆pNq

  q pa % iq

– Hompa∆pNq ˆ apXq,Ω  q pproduct/exponential adjunctionq

– Hompap∆pNq ˆXq,Ω  q pa preserves ˆq

– Homp∆pNq ˆX,Ω  q pΩ  a sheaf, a % iq

– HompX,Ω∆pNq
  q pproduct/exponential adjunctionq

for an arbitrary presheaf X implies that Ω∆
  – a

`

Ω∆pNq
  

˘

. This says that Ω∆pNq
  is a

sheaf, and therefore
a
´

Ω∆pNq
  

¯

– Ωa∆pNq
  .

Hence,
a∆pκq Ď Ωa∆pNq

  .

The special combinatorial property of the Cohen poset that plays a role in the grand
finale of this section is the countable antichain condition. For posets, the countable
antichain condition says that any pairwise incompatible family of points is at most
countable. The statement for general categories is as follows.

Definition 5.10. A c.a.c. object (or object with the countable antichain condition)
in a category is a nonzero object A for which SubpAq has the countable antichain
condition. A c.a.c. category is a category generated by a family of c.a.c. objects.

As has already been observed, the Cohen poset is generated by the representable
objects. A classical and straighforward excercise reveals that the Cohen poset satisfies
the countable antichain condition, and therefore so does Ópf q for each f P Pκ. This
implies that the poset of closed subobjects ClSubpÓ pf qq has the countable antichain
condition as well, making yf a c.a.c. object, and by extension ShpPκ,  q a c.a.c.
category. The following lemma is therefore the last step in the proof of Theorem
5.6.(d).
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Lemma 5.11. In any c.a.c. topos of the form ShpC, Jq, given infinite sets X and
Y , one has EpipX, Y q “ H if and only if epipa∆pXq, a∆pY qq – 0.

Proof. The reverse direction of this is a special case of Lemma 5.3. To see the forward
direction, consider its contrapositive: Write E “ epipa∆pXq, a∆pY qq, and assume that
E fl 0. It suffices to generate a family of pairwise disjoint subobjects tUx,y | x P Xu
for each y P Y of A such that Y “

Ť

Wx, where Wx “ ty P Y | Ux,y fl 0u for each
x P X . Note that since Ux,y ^ Ux,y1 ‰ 0 implies y “ y1, |Wx| ď |N| for any x. Such a
family would demonstrate that

|Y | ď
ÿ

xPX

|Wx| ď
ÿ

xPX

|N| “ |N| ¨ |X | “ |X |.

The second inequality is due to A being a c.a.c. object, and the last equality is due to
X being infinite.

To construct this family of subobjects of A, first equate subobjects of A with subobjects
of 1 ˆ A, as these objects are isomorphic. Since E fl 0, E has at least two distinct
subobjects (0 and E, say). These give rise to two distinct formulas E Ñ Ωj . Since
Shp, Jq is a c.a.c. category, then, there is some (nonzero) c.a.c. object A and an
arrow k : AÑ E to seperate the two formulas. Compose k : AÑ E with the monic
representing E Ď a∆pY qa∆pXq to produce the arrow k1 : AÑ a∆pY qa∆pXq, and define
g “ ptrpk1q, π2q : a∆pXq ˆ AÑ a∆pY q ˆ A to be the epic arrow corresponding to k1.

For each element x : 1 Ñ X , or y : 1 Ñ Y in Sets, set x̂ “ a∆pxq and ŷ “ a∆pyq. The
objects Ux,y are constructed as in the following adjacent pullback diagrams.

1 ˆ A a∆pXq ˆ A a∆pY q ˆ A

Ux,y Vy 1 ˆ A

x̂ˆidA g

ŷˆidA

To see that Ux,y ^Ux,y1 “ 0 for distinct y, y1 P Y , it suffices to see that Vy ^Vy1 “ 0 for
such y, y1. Of course, since a preserves pullbacks, 0, and 1, the following is a pullback
square.

1 a∆pY q

0 1

ŷ

ŷ1

59



The functor p´q ˆ A also preserves pullback squares, so

1 ˆ A a∆pY q ˆ A

0 1

ŷˆid

ŷ1ˆid

is a pullback square as well. Now consider the following commutaive cube.

1 ˆ A a∆pY q ˆ A

0 1 ˆ A

Vy1 a∆pXq ˆ A

0 Vy

ŷ1ˆid

ŷˆid

g

Using a similar argument to the one found in the proof for Lemma 3.14, since it is known
that every square but the bottom square is a pullback, so must the bottom square be
a pullback. It follows that Vy ^ Vy1 “ 0 for y ‰ y1. It follows that tUx,y | y P Y u is a
pairwise disjoint famiy of subobjects of 1 ˆ A.

Showing that Y “
Ť

xPXWx consists of three applications of LAPCL (left adjoints
preserve colimits). The following are the adjoints involved:

• p´q ˆ A % p´qA,

• a % i, and

• h˚ %
ś

h for any arrow h.
The first item in this list shows that p´q ˆ A preserves coproducts. It follows from
the second item in the list that

a∆pXq – a∆

˜

ğ

xPX

1

¸

–
ğ

xPX

a∆p1q “
ğ

xPX

1,

so one also has
a∆pXq ˆ A –

ğ

xPX

p1 ˆ Aq.
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For any y P Y , this gives (via the third item in the list) the pullback diagram

Vy a∆pXq ˆ A

Ů

xPX Ux,y
Ů

xPXp1 ˆ Aq

– –

Hence, Vy –
Ů

xPX Ux,y . Recall that in a topos, pullbacks of epics are epic. The
arrows Vy Ñ 1 ˆ A are therefore all epic, since g is, so Vy fl 0 for any y. This makes
Ux,y fl 0 for some x P X , putting y P

Ť

xPXWx. The element y P Y was arbitrary, so
Y “

Ť

xPXWx.

Since κ was chosen specifically to be larger than 2N, and 2N is strictly larger than N,

epipa∆pNq, a∆p2Nqq – epipa∆p2Nq, a∆pκqq – 0.

This makes
a∆pNq ă a∆p2Nq ă a∆pκq ď Ωa∆pNq

  .

The Cohen topos is Boolean, and the usual global elements of 2N carry over to global
elements of a∆p2Nq, so 5.6.(d) follows directly from Lemma 5.5.
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