CSCI 341 Problem Set 8

Introducing Turing Machines

Due Friday, November 7

Don't forget to check the webspace for hints and additional context for each problem!
Problem 1 (ABCs Done Right). Show that the language $\{a^nb^nc^n\mid n\in\mathbb{N}\}$ is decidable.
Solution.
Problem 2 (Regular Languages are Decidable). Prove that $Reg \subseteq Dec$.
Solution.
Problem 3 (With a Counter). Let's consider a variant of the Turing machine that implements an additional <i>counter</i> . Its basic machine programs are generated by the grammar
$E \to \mathtt{skip} \mid \mathtt{move} \ \mathtt{left} \mid \mathtt{move} \ \mathtt{right} \mid \mathtt{write} \ \sigma \mid \mathtt{count} \ \mathtt{up} \mid \mathtt{count} \ \mathtt{dn}$
and its states have the additional feature of being able to check whether the value of the counter is a particular value. That is, you can write
if σ and count 5 (followed by commands)
The output of a Turing machine that operates with a counter is contained in the (single) tape, as usual. Show that every string transformer that can be represented by a Turing machine with a counter is Turing computable in the ordinary sense.
Solution.
Problem 4 (One Further Step). Show that exponentiation, $f(n,m): \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, is a computable function by reducing it to multiplication.
Solution.