CSCI 341 Workshop 1

Automata and Languages

September 1, 2025

Theorem 0.1 (Ordinary Induction). Let $S \subseteq \mathbb{N}$ be a set of natural numbers. If the following two statements are true:

Base Case *The number* $0 \in S$.

Induction Step *If the number* $n \in S$ *, then the number* $n + 1 \in S$ *.*

then $S = \mathbb{N}$.

Problem 1 (Counting Trees). Recall that a complete binary tree is a binary tree in which every level of the tree is entirely full. For example, the following tree is a complete binary tree with three levels.

The complete tree with three layers has 7 nodes. Using *Ordinary Induction*, prove that the complete binary tree with n layers has $2^n - 1$ nodes. For example, $2^3 - 1 = 8 - 1 = 7$.

Problem 2 (*Bonus* Counting Prefixes). Given a word $w = a_0 a_1 \cdots a_{n-1}$, a *subword* of w is a consecutive sequence of indices $[k, k+1, k+2, \ldots, l-1]$ for $0 \le k \le n-1$. We often identify a subword with the word $u = a_k a_{k+1} \cdots a_{l-1}$, so that there exist two other subwords v_1 and v_2 such that $w = v_1 u v_2$.

$$\underbrace{a_0a_1a_2\cdots a_{n-1}}_w = \underbrace{a_0a_1\cdots a_{k-1}}_{v_1}\underbrace{a_ka_{k+1}\cdots a_{l-1}}_u\underbrace{a_la_{l+1}\cdots a_{n-1}}_{v_2}$$

For example, the subwords of *aba* are

$$\underbrace{ \begin{bmatrix}] \\ \varepsilon \end{bmatrix}}, \underbrace{ \begin{bmatrix} [0] \\ a \end{bmatrix}}, \underbrace{ \begin{bmatrix} [1] \\ b \end{bmatrix}}, \underbrace{ \begin{bmatrix} [0,1] \\ ab}, \underbrace{ \begin{bmatrix} [1,2] \\ ba \end{bmatrix}}, \underbrace{ \begin{bmatrix} [0,1,2] \\ aba \end{bmatrix}}$$

of which there are 7. Using Ordinary Induction, prove that a word of length n has

$$\frac{n(n+1)+2}{2}$$

many subwords. Hint: Every subword of the word wa is either a subword of w or a suffix of wa, i.e., ends with a. also, $(n+1)(n+2) = n^2 + 3n + 2$.

1

Solution to Counting Trees. Let $S=\{n\mid \text{the complete binary tree with }n\text{ layers has }2^n-1\text{ nodes}\}$ Our goal is to prove that $S=\mathbb{N}.$ We proceed by induction on n. Base Case

Induction Hypothesis

Induction Step:

Solution to Counting Subwords. We proceed by induction on n .
Base Case
Induction Hypothesis
Induction Step:

Theorem 0.2 (Induction on Words). Let $L \subseteq A^*$ be a language. If the following two statements are true:

Base Case *The empty word* $\varepsilon \in L$ *is in the language.*

Induction Step *If* $w \in L$, then for any $a \in A$, $wa \in L$.

then $L = A^*$.

Problem 3 (Double-reversal). Given a word w, define w^{op} to be the *reversal* of the word, as follows: on the empty word, we define $\varepsilon^{\mathrm{op}} = \varepsilon$. Given a word $w \in A^*$ and a letter $a \in A$, we define $(wa)^{\mathrm{op}} = aw^{\mathrm{op}}$. Use Induction on Words to prove that for any word $w \in A^*$, $(w^{\mathrm{op}})^{\mathrm{op}} = w$.

Problem 4 (All-accepting). Let $A = \{0,1\}$. Use Induction on Words to prove that the all-accepting automaton accepts every word form A. That is,

$$\mathcal{A}_{\checkmark} = 0 \bigcirc s_0 \bigcirc 1 \qquad \mathcal{L}(\mathcal{A}_{\checkmark}, s_0) = A^*$$

Problem 5 (*Bonus* Double Reversal). Use Induction on Words to prove that for all $w, u \in A^*$, the reversal of their concatenation is the reversed concatenation of their reversals:

$$(wu)^{\mathrm{op}} = u^{\mathrm{op}}w^{\mathrm{op}}$$

Solution to Double Reversal. Let $L = \{w \mid (w^{op})^{op} = w\}$. The goal is to show that $L = A^*$. We proceed by induction on $w \in L$.
Base Case
Induction Hypothesis

Induction Step:

$\label{eq:solution} \begin{cal} \textit{Solution to All-accepting.}\\ \textit{induction on } w \in L. \end{cal}$	Let $L = \mathcal{L}(\mathcal{A}_{\checkmark}, s_0)$.	The goal is to show	w that $L = A^*$.	We proceed by
Base Case				
Induction Hypothesis				
7 1 O.				
Induction Step:				

Solution to Double Reversal. This one is a bit trickier than Double Reversal, because there are two words involved in the statement. Interestingly, we only need to involve one of the words in the proof: Let

$$L = \{w \mid \text{for any word } u, (wu)^{\text{op}} = u^{\text{op}}w^{\text{op}}\}$$

The goal is to show that $L = A^*$. We proceed by induction on $w \in L$.

Base Case

Induction Hypothesis

Induction Step: