CSCI 341 Workshop 4

Grammars

October 1, 2025

1 Some Pumping and Grammar Warmup

Problem 1 (Balanced Parentheses). A string of parentheses, i.e.,) and (, is called *balanced* if every left-parenthese (is eventually followed by a unique *matching* right-parenthese). For example, the following strings of parentheses are not balanced:

$$(,))(), ((())()$$
 (*)

but the following strings of parentheses are:

$$\varepsilon$$
, (), (())(), ((())())() (**)

Let $A = \{(,)\}$ and

$$L = \{ w \in A^* \mid w \text{ is balanced} \}$$

- (1) Show that L is not regular.
- (2) Design a context-free grammar G with a variable x that derives L.
- (3) In your grammar, derive or draw parse trees for the words in (**)
- (4) Explain why the words in (*) are not derivable.

Problem 2 (Palindromes). Let $A=\{a,c,e,r\}$ and recall that for any word $w=a_1a_2\cdots a_n$, we define $w^{\mathrm{op}}=a_na_{n-1}\cdots a_2a_1$. Consider the language below:

$$L_{pal} = \{ w \in A^* \mid w = w^{\mathrm{op}} \}$$

The words in \mathcal{L}_{pal} are precisely the palindromes.

- (1) Show that $L_{\it pal}$ is not regular.
- (2) Design a grammar with a variable that derives \mathcal{L}_{pal} .
- (3) Draw a parse tree for racecar.

2 Some Normal Form Problems

Definition 2.1 (Unit Production). Let $\mathcal{G} = (X, A, R)$ be a grammar. A *unit production* is a rewrite rule of the form $x \to y$, where both $x, y \in X$.

Problem 3 (Killing ε s with a dagger?). Consider the grammar (taken from *Sipser*'s book) \mathcal{G} below.

$$x \rightarrow a \mid b \mid xa \mid xb \mid x0 \mid x1$$

$$y \rightarrow x \mid (u)$$

$$z \rightarrow y \mid z * y$$

$$u \rightarrow z \mid u + z$$

Observe that the rewrite rules $y \to x$, $z \to y$, and $u \to z$ are all unit productions.

- (1) Find a derivation and parse tree that yields a * b0 + b * a.
- (2) Find a grammar \mathcal{G}' with a variable x' such that \mathcal{G}' has no unit productions at all and yet $\mathcal{L}(\mathcal{G}',x')=\mathcal{L}(\mathcal{G},x)$. In other words, *eliminate the unit productions in* \mathcal{G} .

Definition 2.2 (Usefulness). Let \mathcal{G} be a grammar with variables x, y. We say that y is *reachable* from x if there is a sequence of reqrites $x \Rightarrow \mu_1 \Rightarrow \cdots \Rightarrow \mu_n$ such that y is a variable that appears in μ_n . We say that y is *useful* for x if y is reachable from x and $\mathcal{L}(\mathcal{G}, y)$ is not empty (there is at least one derivation possible starting from y).

Problem 4 (Cutting the fat). Consider the grammar \mathcal{G} below.

$$x \to yz \mid ux$$

$$y \to 0$$

$$z \to zu \mid xy$$

$$u \to 0z \mid 1$$

We are going to find a grammar without useless symbols with a state that is equivalent to x.

- (1) Which variables are reachable from x?
- (2) Does every variable derive a nonempty language?
- (3) Which variables are useless for x?
- (4) Find a grammar G' with a variable x' such that
 - (a) G' has no useless symbols for x',
 - (b) G' has no unit productions, and
 - (c) $\mathcal{L}(\mathcal{G}', x') = \mathcal{L}(\mathcal{G}, x)$.

Definition 2.3 (Chomsky Normal Form). Let $\mathcal{G}=(X,A,R)$ be a grammar with a variable $x\in X$. We say that x is in Chomsky Normal Form if

- (1) Every variable in \mathcal{G} is useful for x.
- (2) If $y \in X$ has a rewrite rule $y \to \varepsilon$, then y = x (although this rewrite rule is not required to exist at all).
- (3) All other rewrite rules (i.e., not $x \to \varepsilon$) in \mathcal{G} are of one of the following two forms:
 - (a) $y \to zu$ where $y, z, u \in X$
 - (b) $y \to a$ where $y \in X$ and $a \in A$

Problem 5 (Manufacturing Chomsky Normal Forms). Consider the grammar \mathcal{G} below:

$$x \to yxz \mid \varepsilon$$

$$y \to 0yx \mid 1$$

$$z \to x1x \mid y \mid 11$$

Find a grammar \mathcal{G}' with a variable x' such that x' is in Chomsky Normal Form and $\mathcal{L}(\mathcal{G}',x')=\mathcal{L}(\mathcal{G},x)$.

Definition 2.4 (Greibach Normal Form). Let $\mathcal{G}=(X,A,R)$ be a grammar with a variable x. We say that x is in *Greibach normal form* if no more than the variable x has a rewrite rule $x\to \varepsilon$, and if every other rewrite rule is of the form

$$y \rightarrow azu$$

for some $a \in A$ and some $y, z, u \in X$.

It is not an easy theorem, but it is known that every context-free grammar can be turned into one in Greibach Normal Form! This has significant consequences, which we might talk about next week.

Problem 6 (Challenging!!). Consider the grammar \mathcal{G} below:

$$x \to yxz \mid \varepsilon$$
$$y \to 0yx \mid 1$$
$$z \to x1x \mid y \mid 11$$

Find a grammar \mathcal{G}' with a variable x' such that x' is in Greibach Normal Form and $\mathcal{L}(\mathcal{G}',x')=\mathcal{L}(\mathcal{G},x)$.