
Coalgebraic Completeness Theorems for
Effectful Process Algebras

Todd Schmid

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

January 4, 2024

I, Todd Schmid, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the work.

Abstract

In 1984, Robin Milner proposed a nonstandard interpretation of regular expressions:

as behaviours of nondeterministic processes rather than regular languages. This shift

in interpretation drastically reduced the set of sound equivalences between regular

expressions, making Arto Salomaa’s complete axiomatization of the algebra of regular

languages unsound under the new interpretation. In the same paper, Milner adapted

Salomaa’s axioms to give a sound axiomatization of bisimilarity and asked whether

his axiomatization was complete.

Milner’s completeness problem was open for nearly 38 years before Clemens

Grabmayer published a positive solution in 2022. Milner’s problem motivated three

decades of research into process algebra, the algebraic study of concurrent processes.

Working concurrently with the process algebra community between the 1960s and

1990s, Volodymyr N. Redko, John H. Conway, Dexter Kozen, and their collaborators

developed Kleene algebra (KA), an abstraction from the algebra of regular languages

and generalization of Salomaa’s axiomatization. Their work led to the invention of

Kleene algebra with Tests (KAT), which extends Kleene algebra with Boolean control

flow for reasoning about imperative programs.

A notable fragment of KAT, guarded Kleene algebra with tests (GKAT), consists of

only the programs that can be written using the if-then-else and while-do imperative

programming constructs. GKAT is a simple and efficient fragment of KAT for which a

sound Salomaa-style axiomatization exists. However, the question of completeness

for this axiomatization is still open.

In this thesis, I connect the completeness problems of Milner and GKAT using

techniques from universal algebra and coalgebra. In the first part of the thesis,

I identify the source of difficulty in both these problems: In GKAT and Milner’s

regular expressions modulo bisimilarity, some finite systems of formal equations

are unsolvable. I show that every coalgebraic completeness theorem comes from a

certain structured class of solvable systems of equations, and vice versa.

In the second part of the thesis, I provide a partial completeness result for GKAT.

Specifically, I show that the axioms of GKAT are complete for GKAT expressions of a

specific form, called skip-free. The proof is a reduction to the completeness theorem

for regular expressions modulo bisimilarity.

In the last part of the thesis, I generalize the completeness problems of Milner

and GKAT to a wide class of process algebras with algebraic effects, which I call

effectful process algebras. Effectful process algebras capture a number of other

process calculi than GKAT and regular expressions modulo bisimilarity, including a

few process calculi that mix probability and nondeterminism.

I develop the theory of effectful process algebras in general. I give a uniform

construction of both the operational and denotational semantics of effectful process

algebras and show that the two semantics coincide, as well as a uniform sound and

complete axiomatization of bisimilarity in effectful process algebras. The axiomati-

zation includes a generalization of an axiom scheme used by Smolka et al. (2019)

to obtain a completeness theorem for GKAT. My general completeness theorem for

effectful process algebras instantiates to the bisimulation variant of this concrete

completeness theorem for GKAT, as well as to completeness theorems for the other

examples mentioned.

Funding. Work on this thesis was partially supported by ERC grant Autoprobe (grant

agreement 101002697).

Impact Statement

A wide variety of programming languages exist, each engineered with its own syntax

and for its own specific use cases. In most programming languages, there is no (and

can be no) algorithmic procedure for determining precisely when two programs

produce all the same results given all the same inputs. This leads computer scientists

to develop other kinds of equivalences between programs, relations between pieces

of code that preserve program behaviour but may not be able to tell every pair of

nonequivalent programs apart. It has also led computer scientists to make the same

move that many of the other natural sciences have: To study abstract, idealized

versions of the objects in question (in this case, programming languages). This thesis

is part of the larger effort of providing general frameworks for developing sound and

complete principles for logically deducing behavioural equivalences between abstract

programs, to better understand the logical content of these equivalences.

The focus of the thesis is on the completeness of certain sound program equiva-

lences, specifically whether they give a full account of bisimilarity and behavioural

equivalence in the contexts where they are appropriate. Famously, for programming

languages with restricted expressive capabilities, completeness theorems for bisim-

ilarity are highly nontrivial to prove. Completeness theorems can lead to efficient

algorithms for deciding program equivalence through proof-search procedures, as

well as justify axiomatic approaches to the semantics of programs. Completeness

theorems are highly sought-after results in theoretical computer science.

This thesis consists of two case studies in proving completeness theorems and a

general recipe for producing complete axiomatizations of bisimilarity in programming

languages featuring an (iterable) algebraic effect. The results build on theoretical

work in the area of program semantics, which is greatly influenced by universal

algebra and coalgebra, iteration, and probability. Notably, this thesis builds on and

aims to generalize

1. the bisimulation analog of Kleene algebra [Mil84], which can be used to model

interactive and nonterminating processes,

2. the bisimulation analog of guarded Kleene algebra with tests [Smo+20; Sch+21],

an abstraction of standard imperative programming in which equivalent inter-

active control flow structures can be efficiently identified,

3. probabilistic variants and extensions of the previous two [SS00; Róż+23], for

reasoning about equivalence of randomized algorithms, and

4. process calculi that mix probability and nondeterminism [MOW03; And99].

A notable application of the second and third points above is to a programming

language called NetKAT, which can be used to specify and reason about policies in

software-defined packet switching networks [And+14; Fos+15; Fos+16].

Acknowledgements

Without my supervisors, Alexandra Silva and Jurriaan Rot, this thesis could not have

happened. I do not know where I would be without the last four years of their

support, their knowledge, their cooking, and especially their patience. It is still hard

for me to grasp just how many hours they spent reading and commenting on drafts

of papers, job applications, presentation slides, and emails1. They were sincerely

the best supervisors I could have hoped for, and I cannot thank them enough for

everything they have done for me.

I also possibly had the best examiners a PhD student could ask for: Samson

Abramsky and Bartek Klin. I cannot thank them enough for reading this thesis with

such enthusiasm and in such detail.

I had the pleasure and the privilege of writing papers with some incredible

scientists over the last few years: My supervisors Alexandra and Jurriaan, Dexter,

Tobias, Fred, Wojtek, Larry, and Victoria. I would like to thank all of you for making

science an absolute joy. I eagerly look forward to future collaborations.

The last four years would have been miserable without my academic family,

many of whom became close friends. To Wojtek: Thank you for the tremendously

positive impact you had on my academic and personal well-being the last two years

we have known each other. May we never fall out of touch. To Jana: Thank you

for making science fun, for catching my mistakes, for saving my life, for trusting me

with your cats, and for giving me a getaway in Holland when I needed it most. To

Tobias: Thank you for making me feel like an actual computer scientist, against all

odds. To Simon: Thank you for looking out for me at the beginning. I would not be

here without you. To the long list of amazing people I have not mentioned explicitly:

You know who you are, and you should know that I haven’t forgotten you. Thank

1I tend to overthink these. . .

you for the good times, no matter how small.

To Angela, who also spent a fair amount of time reading and commenting on

drafts of various important documents and emails: The time we lived in London

together was the happiest and most productive I have ever been. Thank you for

always being there, for painting me pictures, for not letting me give up, for beating

my enemies at card games, for making me laugh when I thought I couldn’t, for being

an avid completionist, and for teaching me so many basic life skills. You deserve

more thanks than I can write in words.

To my brother, Dylan: Without you, I would not have made it through the 8

years leading up to this point as unscathed. You got me through some extremely

tough emotional moments, especially in the last two years. Thank you for your

support. Thank you for helping me move. And thank you for the the millions of

laughs along the way. To my mother and father: Thank you for your seemingly

boundless encouragement. You give me a home to miss, to come back to, to be proud

of. I sometimes hear you say that I did this all on my own, but that is not true.

Thank you to all the people who made me feel at home in Ithaca during my

last year: Sloan, David, and Justin, with whom I spent many lunch hours climbing;

Palashi and Meet, possibly the best neighbours; E and the other incredible noise

artists from The Electrozone and the Synthica crew, who gave me an outlet when I

desperately needed one; and Karuna, who I believe could make anybody feel special.

My acknowledgements section would, of course, be incomplete without a para-

graph consisting mostly of dog names. Thank you, Julia, for trusting me with Mahler.

And a sincere thank you to Ira, who runs the charity All Dogs Matter in London, and

to Wendy and the other ladies at ADM for showing up at our doorstep with Chip,

Gloria, Alfie, Elsie, Edgar, Badger, Blaze, Phoebe, Nellie, Terry, Max, the intrepid

Finbar, Frankie the sweetest, Rex, Lottie, Murphy, Rosie, Honey, Baxter, another Rosie,

Bob, and, yes, even Ricardo.

Here’s to biking in completely the wrong direction
and making it home anyway, somehow.

Contents

1 Introduction 19

1.1 Background . 20

1.2 Scope of the Thesis . 23

1.3 Related Work . 26

1.4 Overview of the Thesis . 27

2 Star Expressions and Coalgebraic Completeness Theorems 31

2.1 Star Expressions and Grabmayer’s Theorem 34

2.2 One-free Star Expressions . 42

2.2.1 Precharts are Coalgebras . 44

2.2.2 Axiomatizing Bisimilarity . 49

2.2.3 Left-affine Systems and Solutions 51

2.3 A Local Approach . 53

2.4 Layered Loop Existence and Elimination 56

2.4.1 Well-layeredness . 56

2.4.2 A note about natural transformations in coalgebra 60

2.4.3 Existence and uniqueness of solutions 61

2.4.4 Reroutings and Closure under homomorphic images 62

2.4.5 A note about reroutings in general 64

2.5 A Global Approach . 66

2.5.1 A global approach to the one-free fragment 69

2.5.2 From local to global . 71

2.6 Discussion . 72

3 Guarded Kleene Algebra with Tests 75

3.1 Guarded Kleene Algebra with Tests 78

3.1.1 The Syntax . 80

3.1.2 Relational/Language Semantics of GKAT 81

3.1.3 Bisimulation Semantics of GKAT 83

3.1.4 Sound Program transformations in GKAT 92

3.1.5 Completeness of Bisimulation GKAT with UA 96

3.1.6 Completeness of GKAT with UA 99

3.1.7 The Proof of Theorem 3.1.34 105

3.1.8 Concluding remarks about GKAT 112

3.2 Skip-free Guarded Kleene Algebra with Tests 112

3.2.1 Skip-free Expressions . 113

3.2.2 Semantics . 114

3.3 Completeness for Skip-free Bisimulation GKAT 125

3.3.1 From skip-free automata to labelled transition systems 125

3.3.2 Translating Syntax . 127

3.4 Completeness for Skip-free Language GKAT 154

3.5 Relation to GKAT . 161

3.6 Related Work . 164

3.7 Discussion . 167

4 Effectful Process Calculi 169

4.1 A Parametrized Family of Process Types 173

4.2 Specifications of Processes . 183

4.3 Behavioural Equivalence and the Final Coalgebra 188

4.3.1 The Proof of Theorem 4.3.4 194

4.3.2 The Proof of Lemma 4.3.7 . 205

4.4 An Axiomatization of Behavioural Equivalence 212

4.5 Star Fragments . 223

4.5.1 One Last Completeness Theorem 230

4.6 Related Work . 237

5 Conclusions and Future Work 241

5.1 Future Work . 242

5.1.1 Coequations . 242

5.1.2 Guarded Kleene Algebra with Tests 244

5.1.3 Effectful Process Algebras . 246

A ACF Extends GKAT 271

A.1 GKAT is an Effectful Process Algebra 271

List of Figures

2.1 Salomaa’s complete axiom system for language equivalence of regular

expressions. Here, r,r1,r2,s ∈ RExp, a ∈ Act, and ⋆ ∈ {+, ∗}. The

system Mil consists of (B0)-(B8), (FP1), (FP2), and (RSP∗). 36

2.2 Two vending machines. 37

2.3 The LTS structure ℓ : RExp→P(✓+Act×RExp). Here, r,r1,r2,s ∈ RExp. 38

2.4 The prechart (StExp, ℓ). Here, s,ri ∈ StExp and a ∈ Act. 44

2.5 A bisimulation rerouting that does not preserve well-layeredness. . . 63

3.1 Two possible specifications of the ideal Fizz! Buzz! player. 79

3.2 The transition structure of (GExp,δ). Here, e,e′, f , f ′ ∈GExp, b∈ BExp,

α ∈ At, and p ∈ Σ. For a given α ∈ At, if neither e⇒ α nor e α|p−−→ e′ can

be derived for any p ∈ Σ and e′ ∈ GExp, then e ↓ α . That is, transitions

not explicitly defined are assumed to be failed termination. 84

3.3 The axioms of Boolean algebra (BA) [Hun04]. We write b =BA c if

BA ⊢ b = c. 93

3.4 The axiom system for language equivalence of GKAT expressions.

Above, e,e1,e2,e1,e2 ∈ GExp and b,c ∈ BExp. As a theory, GKAT con-

sists of the axioms of Boolean algebra (see Figure 3.3), (U1)-(U5),

(S1)-(S6), and (W1)-(W3). The theory GKAT0 consists of the ax-

ioms BA of Boolean algebra, (U1)-(U5), (S1), (S2), (S4)- (S6), and

(W1)-(W3). 93

3.5 An equivalent axiom system for language equivalence of GKAT ex-

pressions. Here, e,e1,e2,e1,e2 ∈ GExp and b,c ∈ BExp. As a theory,

GKAT is equivalent to the axioms of Boolean algebra (see Figure 3.3),

(G0)-(G8), (FP1), (FP2), (R0), (DM), and (RSP∗). The theory GKAT0

is equivalent to the axioms BA of Boolean algebra, (G0)-(G8), (FP1),

(FP2), (DM), and (RSP∗). 94

3.6 The small-step semantics of skip-free GKAT expressions, (GExpsf ,δsf).

Above, e1,e2,e′ ∈ GExpsf , p ∈ Σ, b ∈ BExp, α ∈ At, and ξ ∈✓+GExpsf . 114

3.7 The automaton representing fizzbuzz2. 116

3.8 As a theory, skip-free language GKAT (sfGKAT) consists of (G0)-(G3),

(G6)-(G8), (FP1), (R0), and (RSP). The theory skip-free bisimulation

GKAT (sfGKAT0) consists of (G0)-(G3), (G6)-(G8), (FP1), and (RSP).

Note the omission of (G4), (G5), (FP2), and (DM), as well as the

change from (RSP*) to (RSP). 119

3.9 The transition function δ̃ : GExp→ (⊥+✓+Σ×GExp)At defined in-

ductively. Here, e1 # e2 is e2 when e = 1 and e1 · e2 otherwise, b ∈ BExp,

p ∈ Σ, and e,e′,ei ∈ GExp. 161

4.1 The rules for deriving EQ ⊢ t = s for p,q,r ∈ S∗X , including a general-

ized version of the inference rule (Con) from Figure 2.1. 175

4.2 Operational semantics of process terms. Here, v ∈ Var, a ∈ Act, and

e,ei ∈ Exp. 187

4.3 A diagram of Theorem 4.3.9. 192

4.4 The structure map ℓ : StExp→ LMStExp. Here, c is a constant of S, σ

is a binary operation of S, a ∈ Act, and e,ei ∈ StExp. In the last two

equations, ℓ(e) = p(✓,(a1,e1), . . . ,(an,en)) for some p ∈ S∗(✓+Act×

StExp). 225

5.1 Fragments of the expressive effectful process calculus. 249

A.1 The axioms of EQ∗. Here c ∈ S0, σ ∈ S2, and p(x, y⃗) ∈ S∗X 272

Chapter 1

Introduction

General purpose programming languages are immensely complex, and the body of

programming and scripting languages in industry use is ever-growing and developing.

In response, theoretical computer science has made the same move that many of the

other natural sciences have made: To study, instead, the formal properties of abstract

and idealized versions of the naturally occurring objects of interest (in this case,

programming languages) [Hoa+87]. Reasoning confidently about software requires

a formal understanding of the logical underpinnings of programming languages,

and abstract programming languages make these logical underpinnings particularly

transparent. The mathematical study of abstract programming languages has resulted

in general, language-independent mathematical frameworks for the scientific study

of programs, with numerous applications to software verification.

This thesis is part of the larger effort in theoretical computer science to better

understand the logical structure of abstract programming languages. Its central

contribution is a framework for studying a specific family of abstract programming

languages, what I call effectful process algebras, that includes a number of languages

that have appeared in the literature. Effectful process algebras are abstract program-

ming languages consisting of uninterpreted actions and program branching captured

by an algebraic theory.1 Prototypical examples of effectful process algebras are the

bisimulation variant of regular expressions studied by Milner [Mil84] and the propo-

sitional while programs studied in guarded Kleene algebra with tests [KT08; Smo+20].

To provide the necessary background for effectful process algebra, I discuss these two

examples in the next section.

1In the context of this thesis, the word effect refers to an algebraically presented monad. See the text
under Effectful process algebra in Section 1.2, and under Algebraic effects in Section 4.6, for detail.

20 Chapter 1. Introduction

1.1 Background

One notable example of an abstract programming language is the language of

regular expressions. Kleene introduced regular expressions in [Kle56] as a syntax

for specifying languages of words recognized by finite deterministic automata. In

op. cit., Kleene showed that every language accepted by a DFA is a regular language

(this is known as Kleene’s theorem), and furthermore identified a number of rules

for deriving equations between regular expressions that denote the same language.

Kleene recognized that formal rules are useful from a technical point of view, as they

allow for algebraic reasoning in language equivalence proofs. He left as an open

problem the task of giving a complete axiomatization, a set of inference rules from

which every language equivalence between regular expressions can be derived as a

formal equation.

Kleene algebra

The first complete axiomatization of language equivalence of regular expressions was

given by Salomaa in [Sal66]. Salomaa tailored his inference rules specifically to the

regular language model. One of his axioms requires a notion of empty word property

that does not make sense in other closely related structures, like the relation algebras

that appear in software verification [KP00] or the tropical semirings that appear in

shortest-path algorithms [HM12].

In a paper from 1964, Redko proved that no finite set of equations can axiomatize

the algebra of regular languages [Red64]. Conway proposed a number of related,

infinitary sets of axioms sound for both relation algebras and language equivalence

in his 1971 book [Con71] (where he coined the phrase Kleene algebra). Conway left

the discovery of a complete axiomatization as an open problem. A complete infinitary

axiomatization was presented by Krob [Kro90]. The complete axiomatization that is

nowadays referred to as Kleene algebra (KA) is due to Kozen [Koz91]. For a more

detailed account of the history of the axiomatization of Kleene algebra, see [FS15].

Kleene algebra has since been extended in many directions, to calculi for rea-

soning about control flow in imperative programs [KS96; Koz96], randomized (or

genetic) algorithms [Ros00], programs running synchronously [Wag+19] and concur-

rently [Kap+18], packet-switched networks [And+14], and many others. The first

1.1. Background 21

extension of KA, for reasoning about control flow, is an influential calculus called

Kleene algebra with tests (KAT).

KAT was introduced by Kozen and Smith in [KS96; Koz96]. Formally, it is

the syntactic and axiomatic extension of KA with a Boolean algebra of tests. The

Boolean algebra primitives in KAT allow for the specification of imperative program-

ming constructs like if-then-else conditionals and while loops that are guarded by

tests, while the regular expression primitives allow for sequencing, iteration, and

nondeterministic control flow.

Like in Kleene algebra, KAT expressions are interpreted as languages of a certain

form. Language equivalence of KAT terms is decidable using standard techniques

from automata theory. However, due to the inclusion of nondeterminism in KAT, the

decision problem for equivalence of KAT terms is PSPACE-complete [CKS96] (as is

the case for regular expressions). For contrast, language equivalence of states in a

finite deterministic automaton is efficiently decidable [HK73].

KAT can encode abstract imperative programs that cannot be expressed with

if-then-else and while loops alone. Restricting KAT to its if-then-else and while loop

constructs, i.e. restricting to guarded2 KAT (GKAT) expressions, gives rise to a

deterministic fragment of KAT [KT08]. Recently, an axiomatization of language

equivalence for GKAT expressions was proposed by Smolka et al. [Smo+20], inspired

by Salomaa’s axiomatization of language equivalence for regular expressions. The

authors show that their axioms are sound for language equivalence in GKAT and

that language equivalence is efficiently decidable. However, their completeness proof

relies on the presence of an additional axiom scheme, a powerful set of inference

rules collectively called the uniqueness axiom. The authors leave as an open question

whether the uniqueness axiom can be derived from the other axioms—or equivalently,

whether the Salomaa-inspired axiomatization is complete for language equivalence

in GKAT. At the time of writing, this problem remains open.

In an earlier article [KT08], which introduced GKAT expressions as deterministic

KAT expressions, Kozen and Tseng construct an example of a finite deterministic

automaton that accepts a language not expressible in GKAT. In other words, GKAT

fails to satisfy an analogue of Kleene’s theorem. Salomaa’s completeness proof for

2Guarded in the sense that branching is determined by a test.

22 Chapter 1. Introduction

regular expressions relies on Kleene’s theorem, and therefore cannot be adapted to

GKAT. This was observed by Smolka et al. in [Smo+20], where the completeness

problem for GKAT is first stated.

Interestingly, GKAT is not the only place where a failure of Kleene’s theorem

presented a barrier to a completeness proof for an abstract programming language.

Another example can be found in process algebra, the algebraic study of communicat-

ing processes [BW90].

Regular expressions in process algebra

In the 1980s, Milner proposed an interpretation of regular expressions that is not

a model of KA [Mil84]. At the time, process algebra was emerging as its own

research field, with the introduction of calculi like Milner’s CCS [Mil80], Hoare’s

CSP [Hoa80], and Bergstra and Klop’s ACP [BK82]. In [Mil84], Milner observes that

regular expressions can be faithfully translated into the syntax of CCS.

CCS terms denote system behaviours, states in a labelled transition system

modulo bisimilarity. Bisimilarity originates in modal logic [Ben77] and concurrency

theory [Mil80; Par81]. Intuitively, two processes are bisimilar when they are indis-

tinguishable from the perspective of an interacting agent. Bisimilarity is efficiently

decidable [HS96], implies trace equivalence in labelled transition systems, and often

appears in language equivalence checking algorithms [BP13].

Translating regular expressions to CCS terms and then interpreting them as

system behaviours gives an interpretation of regular expressions that differs from the

language interpretation of regular expressions in two key ways: First and foremost,

there are finite processes that are not bisimilar to any regular expression—the relevant

analogue of Kleene’s theorem fails! Milner left open the problem of characterizing the

processes that are bisimilar to regular expressions. Baeten, Corradini, and Grabmayer

published one possible solution to this problem in [BCG07].

Second, there are axioms in Salomaa’s axiomatization that are not sound with

respect to bisimilarity. Milner was able to adapt Salomaa’s axiomatization to give

a sound axiomatization of bisimilarity, but left completeness as an open problem.

Grabmayer recently published a positive solution to this problem [Gra22], which

builds on decades of research [Fok97; FZ94; BCG06; Gra05; BCG07; GF20; Gra21].

Milner recognizes in [Mil84] that the main source of difficulty in his complete-

1.2. Scope of the Thesis 23

ness problem appears to be the failure of Kleene’s theorem for regular expressions

modulo bisimilarity. Grabmayer’s solution [Gra22] confirms this observation: The

most technically challenging part of his work is its careful characterization of the

system behaviours given by regular expressions and the structural analysis of these

behaviours that allows the completeness proof to go through.

As the reader might recall, Kleene’s theorem also fails in GKAT, and it was conjec-

tured in [Smo+20] that this is the main source of difficulty in GKAT’s completeness

problem. To understand the relationship between Kleene’s theorem and completeness,

we turn to a general framework for studying stateful systems: coalgebra.

Coalgebra

Bisimilarity can be generalized to provide useful notions of program equivalence

for system types other than labelled transition systems. It is a central notion in a

categorical framework for studying state-based systems called (universal) coalge-

bra [Rut00], in which system types are captured by endofunctors on a category. In

coalgebra, a state-based system is a function of the form X → BX , where X is the

set of states and B is an endofunctor capturing the system type (the B stands for

behaviour). The endofunctor B comes with its own notion of bisimilarity, and for

many canonical system types the corresponding notion of bisimilarity coincides with

the established notion from the literature (see any of [Rut00; Rut98; Jac16] for an

extensive catalogue of known instances). This includes the operational models of

GKAT programs, so-called GKAT automata.

Seeing GKAT and regular expressions modulo bisimilarity through a coalgebraic

lens was precisely what enabled the developments of this thesis.

1.2 Scope of the Thesis

In this thesis, I clarify the relationship between Kleene’s theorem and completeness

proofs by placing them in a larger coalgebraic context. I draw concrete connec-

tions between the completeness problems of GKAT and regular expressions modulo

bisimilarity, and generalize these completeness problems to a much larger class of

abstract programming languages. I prove several completeness theorems along the

way, including partial completeness results for GKAT and a generic completeness

theorem for expressive effectful process calculi generalizing the calculus Milner in-

24 Chapter 1. Introduction

troduced in [Mil84]. In a nutshell, this thesis studies axiomatization problems for

abstract programming languages featuring discrete actions and algebraic effects like

nondeterminism and conditional branching. In these languages, a characteristic lack

of Kleene theorems make completeness results difficult to prove.

Completeness and Kleene’s theorem

The connection between completeness and Kleene’s theorem can be gleaned from

Salomaa’s completeness proof. Salomaa’s proof depends on being able to solve finite

systems of equations in terms of regular expressions, and the class of systems that

admit such solutions is closely related to the class of automata that correspond to

regular expressions. Kleene’s theorem tells us that every finite automaton corresponds

to a regular expression, but the standard proof of this fact (using state elimination) is

really an argument showing that every finite system admits a solution. Failure of an

abstract programming language to satisfy a Kleene theorem is a direct consequence

of some systems of equations failing to have solutions in that language. This can

be a serious barrier to finding a completeness proof. In Chapter 2, we will see that

weaker versions of Kleene’s theorem suffice, and furthermore characterize the precise

situations in which completeness is obtainable.

Bisimulation GKAT

To clarify the connection between the completeness problems of GKAT and regular

expressions, I introduce a closely related interpretation of GKAT expressions and

its corresponding axiomatization, bisimulation GKAT. Bisimulation GKAT is an

axiomatization that captures the interpretation of GKAT expressions as behaviours

of deterministic processes, states in a GKAT automaton modulo bisimilarity. In

Chapter 3, we will see a technique for reducing the completeness problem of GKAT to

the completeness of bisimulation GKAT, further motivating the study of bisimulation

in the context of GKAT.

Coalgebraic developments

In the last part of the thesis, I give a coalgebraic generalization of the completeness

problems for bisimulation GKAT and regular expressions modulo bisimilarity. This is

obtained by observing that the functors capturing bisimilarity of GKAT programs and

bisimilarity of regular expressions are of a common form, namely M(Var+Act× (−)),

1.2. Scope of the Thesis 25

where Var and Act are fixed in the beginning (here, M stands for monad, terminology

that will be explained in Chapter 4). By varying the monad M in the system type, we

are able to capture both labelled transition systems and the aforementioned GKAT

automata. Namely, M determines the type of branching in each system: Concretely,

regular expressions (in process algebra) specify labelled transition systems, which

branch nondeterministically (this is captured by setting M to be the powerset functor),

and GKAT expressions specify automata that branch conditionally with respect to a

Boolean guard (this is captured by setting M to be the partial maps functor).

Effectful process algebra

It turns out that the branching types of GKAT and of regular expressions modulo

bisimilarity are determined by sets of equational laws. In regular expressions modulo

bisimilarity, branching is specified by a nondeterministic choice operator + that acts

like the join operator in a semilattice. In GKAT, program branching is specified using

an if-then-else operation with a Boolean guard, which is captured by what we call the

guarded algebra laws3. This is reflected by the type of branching in each case, which

is computed as the free algebra satisfying the given set of laws: The free semilattice

generated by a given set is its powerset, and the free guarded algebra is given by the

partial maps functor (⊥+(−))At (where At is the set of atoms of the Boolean algebra

of tests). We call program branching that is determined by a set of equational laws

effectful, in reference to Plotkin and Power’s algebraic effects [PP02].

In op. cit., Plotkin and Power use equational theories in various categories to cap-

ture the monadic semantics of computational effects due to Moggi [Mog91]. Moggi

uses so-called strong monads to give a semantics to program effects like exceptions,

nondeterminism, probability, input and output, side-effects, and continuations. As

Plotkin and Power show, many of these effects (excluding continuations) can be

captured by a set of algebraic operations and equations acting on an object in some

category [PP02]. In the context of this thesis, the objects we deal with are sets. It is

interesting to note that an algebraic presentation of a monad in the category of sets

induces a strength for that monad, although we will not make explicit use of monad

strengths at any point in the thesis.

In this thesis, I use the term effectful process algebra to refer to any algebra of

3Although, Manes referred to algebras of if-then-else as McCarthy algebras [Man91].

26 Chapter 1. Introduction

abstract programs that exhibit a form of program branching that is determined by

a set of equational laws. I introduce and develop the theory of effectful process

algebra, in which GKAT, regular expressions modulo bisimilarity, and many other

abstract programming languages can be studied uniformly and axiomatically. More

specifically, GKAT and regular expressions modulo bisimilarity are exhibited as star

fragments, fragments of larger calculi corresponding to each effectful branching

type. I give a uniform complete axiomatization of these star fragments using a

generalization of the uniqueness axiom of GKAT. Finally, encouraged by the positive

results of Grabmayer [Gra22] and the partial completeness results for GKAT in

Chapter 3, I conjecture that the uniqueness axiom can be derived from the other

axioms for star fragments in general. This conjecture subsumes the (currently open)

GKAT completeness problem, but widens the scope to other abstract programming

languages, including several probabilistic languages.

1.3 Related Work

A detailed account of the literature related to the work in Chapter 2 can be found

in the introduction to that chapter. For detailed accounts of the work related to

Chapters 3 and 4, refer to Sections 3.6 and 4.6 respectively. For now, I briefly mention

two important lines of research related to this thesis.

Kleene coalgebra

The effectful process algebra framework can be seen as a generalization of the calculi

in Milner’s paper [Mil84] to a much wider class of system types. In this sense, there

are clear parallels between our work and the thesis of Silva [Sil10]. Silva’s thesis

introduces a family of calculi that includes certain effectful process algebras found

in Chapter 4, but also includes many other system types (coalgebras for general

polynomial functors on Set) that the effectful process algebra framework does not

address. On the other hand, the effectful process algebra framework covers system

types not included in Silva’s framework: Effectful process algebras allow branching to

be captured by a large class of equational theories, whereas Silva’s is centred around

one theory (semilattices).

Another, possibly more important difference between effectful process algebra

and the calculi in Silva’s thesis is that effectful process algebras do not always satisfy

1.4. Overview of the Thesis 27

an analogue of Kleene’s theorem, whereas Silva’s calculi do. The lack of expressive-

ness of most effectful process algebras makes for incredibly difficult completeness

problems, nearly all of which are open.

The work [Mil10; BMS13] is also of note here. In op. cit., the authors generalize

the coalgebraic calculi studied in Silva’s thesis to categories other than Set. The

calculi they obtain also satisfy a version of Kleene’s theorem (replace finite with

finitely presentable), which allows for their completeness proof to go through. Ef-

fectful process algebra can also be generalized to categories other than Set (see my

preprint [Sch22a] for effectful process algebra with posets). The comparison between

effectful process algebras in other categories and the calculi in [Mil10; BMS13] is

analogous to the comparison with the calculi of Silva.

Iteration

In [Mil84], Milner remarks that a slight variation on his calculi “can probably. . . be

fitted in to the framework of Elgot’s [Elg75] iterative algebraic theories.” Indeed,

there is a notable connection between effectful process algebra and the iterative

theories of Elgot [Elg75], Bloom and Ésik [BE76; BÉ88], Nelson [Nel83], and

Adamék, Milius, and Velebil [AMV11]. Chapter 4, for example, uses what I call

an iterative branching theory, a variation on the notion of Elgot monad from the

last cited work. What sets effectful process algebra apart from existing work in

this area is the flexibility of its syntax: Effectful process algebra handles recursion

through single-variable fixed-points, which makes restrictions of axiomatizations to

certain fragments straightforward. In iterative algebra, handling recursion when

restricting to fragments requires characterizations of solvable systems of equations.

These characterizations are often very difficult to obtain, which we can clearly see

from the expressiveness problem posed by Milner and tackled in [BCG07].

1.4 Overview of the Thesis

The technical content of the thesis is broken up into three chapters, roughly covering

(and improving on) four papers [Sch+21; SRS21; KSS23; Sch+22]. Aside from

the use of coalgebraic tools, each of which I summarize in Chapter 2 (but can also

be found in [Rut00; Gum99; Adá05; Jac16]), each chapter is self-contained. A

breakdown of each chapter is given below.

28 Chapter 1. Introduction

Chapter 2 This chapter introduces two methods for proving coalgebraic complete-

ness theorems, called the local and global methods, that have their roots in

the work of Jacobs [Jac06] and Silva [Sil10]. The guiding example of the

proof method is a rephrasing of the completeness proof for the Horn axiomati-

zation of one-free regular expressions modulo bisimilarity due to Grabmayer

and Fokkink [GF20], which can be seen as an instance of the local method.

The chapter begins with an introduction to Milner’s completeness problem

and gives an expository account of Grabmayer and Fokkink’s proof in op. cit.

Furthermore, a close examination of the global coalgebraic completeness proof

method is used to expose a characterization of coalgebraic completeness proofs

in general. This culminates in a completeness proof strategy (Lemma 2.5.3

and Theorem 2.3.2) that is used to prove the main completeness theorem in

Chapter 4, Theorem 4.4.11.

This chapter is based on the paper On Star Expressions and Coalgebraic Com-

pleteness Theorems [SRS21], authored by myself, Jurriaan Rot, and Alexandra

Silva, and presented by myself at MFPS in 2021. I was the main contributor to

this work.

Chapter 3 This chapter discusses the completeness problem of GKAT, the while

fragment of KAT. Inspired by Grabmayer and Fokkink’s partial solution to

Milner’s completeness problem, the completeness theorem for one-free regular

expressions modulo bisimilarity [GF20], we introduce the skip-free fragment of

GKAT and show that a subset of the axioms of GKAT give a complete axiomati-

zation of bisimilarity in this fragment. The completeness proof is a reduction

to the completeness of one-free regular expressions modulo bisimilarity. We

furthermore show that the completeness of skip-free GKAT modulo guarded

language equivalence can be reduced to the completeness of skip-free GKAT

modulo bisimilarity.

Section 3.1 is loosely based on Guarded Kleene Algebra with Tests: Coinduction,

Coequations, and Completeness [Sch+21], authored by myself, Tobias Kappé,

Dexter Kozen, and Alexandra Silva, and presented by myself at ICALP 2021. I

was the main contributor to this work.

1.4. Overview of the Thesis 29

The rest of the chapter is based on A Complete Inference System for Skip-free

Guarded Kleene Algebra with Tests [KSS23], authored by Tobias Kappé, myself,

and Alexandra Silva, and presented by myself at ESOP 2023.

Chapter 4 In this chapter, I observe that GKAT and regular expressions modulo

bisimilarity are effectful process algebras, that they specify systems with branch-

ing type captured by equational laws. More specifically, I introduce an expres-

sive calculus for each effectful branching type, along with both an operational

and denotational semantics. I show that the two semantics coincide, and

give a complete axiomatization of semantic equivalence. GKAT and regular

expressions modulo bisimilarity are exhibited as certain fragments of these

expressive calculi, which I call star fragments. For the cases where the free

algebra construction satisfies a mild constraint, which includes GKAT automata

and labelled transition systems, a complete axiomatization of the corresponding

star fragment is obtained using a generalization of GKAT’s uniqueness axiom.

This chapter is based on and improves on the paper Processes Parametrized by an

Algebraic Theory [Sch+22], authored by myself, Wojciech Rozowski, Jurriaan

Rot, and Alexandra Silva, and presented by myself at ICALP 2022. I was the

main contributor to this paper. The chapter generalizes the work in [Sch+22]

by including the notion of variable reduction operator taken from my preprint A

(Co)Algebraic Framework for Ordered Processes [Sch22a].

Chapter 5 In this chapter, I speculate on the future of effectful process algebra. The

conjectures found in the technical chapters above are summarized, and an

overview of currently ongoing work is presented.

Chapter 2

Star Expressions and Coalgebraic

Completeness Theorems

In 1984, Robin Milner gave a non-standard interpretation of regular expres-

sions [Mil84], viewing them as behaviours of nondeterministic processes rather

than languages recognized by finite automata. This affects the semantics in two

key ways: First, there are finite nondeterministic processes that do not behave like

any regular expression1. This is in stark contrast with the language semantics of

regular expressions, where Kleene’s theorem tells us that every finite automaton

has a language equivalent regular expression [Kle56]. Second, there are axioms

in Salomaa’s complete axiomatization of the algebra of regular languages [Sal66]

that are unsound in the process interpretation. Milner acknowledges these changes

in [Mil84] and outlines a modified version of Salomaa’s axiomatization that is sound

in the new interpretation. He does not offer a proof of completeness, however, and

leaves it as an open problem.

Thirty-eight years later, Milner’s completeness problem was solved by Clemens

Grabmayer [Gra22], who extended a partial solution to the problem achieved earlier

in joint work with Wan Fokkink [GF20]. The present chapter contains a description

of Milner’s completeness problem, but is more specifically concerned with analyzing

the completeness proof of Grabmayer and Fokkink [GF20]. Grabmayer and Fokkink’s

completeness proof does not explicitly make use of coalgebra, but as we will see, its

overall structure can be rephrased in the language of coalgebra. It is our motivating

example of a coalgebraic completeness theorem, a concept I introduce in this chapter.

1A characterization of those that do was found in [BCG07].

32 Chapter 2. Star Expressions and Coalgebraic Completeness Theorems

Like many related completeness proofs that go through automata or other

types of transition systems, Grabmayer and Fokkink’s completeness proof consists of

four key parts. The first is the production of models from expressions through the

operational semantics. The second is a sort of inverse to the first, a notion of solution

to a model in the class of expressions. The third is the identification of a distinguished

class of models that captures the semantics of the expressions, every member of

which admits a unique solution modulo the axioms. This tells us that every model

in the distinguished class corresponds to an expression modulo the axioms. The

fourth is the ability to reduce equivalent pairs of models to a common representative

without leaving the distinguished class. This allows us to identify expressions up to

provable equivalence if they are assigned equivalent models.

The third and fourth parts are subtler than the first two. In a classical proof

such as Salomaa’s [Sal66], but also in more recent coalgebraic formulations (for

example, [Sil10; Jac06]), the distinguished class typically consists of all finite (or

locally finite) automata. In this setting, solvability of finite systems can be done

inductively on the number of free variables, and comparing automata simply consists

of finding a bisimulation between them. Bisimulations between finite automata can

always be equipped with the structure of a finite automaton, so the fourth step is

rarely worth mentioning in this situation. Historically, the highest hurdle to clear

has been the issue of proving that solutions are unique (in [Sal66], for example).

In the setting of Grabmayer and Fokkink’s paper [GF20], on the other hand, the

class of models considered consists of the so-called LLEE-charts. The need for such a

non-trivial class comes from the above-mentioned issue that there are finite processes

that are not bisimilar to any regular expression. For LLEE-charts, uniqueness of

solutions is not a triviality, but also does not warrant a proof in the main body of

[GF20]. In comparison, a great amount of ingenuity goes into establishing the fourth

of the proof steps mentioned above: The ability to reduce equivalent LLEE-charts to

a common LLEE-chart.

Grabmayer and Fokkink’s completeness proof is highly innovative and technical,

and makes use of new tools carefully crafted for proving the compositionality result

mentioned above. The abstract view I present here is no replacement for the detailed

combinatorial arguments found in [GF20]. Instead, my intent is to unpack its

33

contents by situating them in the context of coalgebra [Rut00; Jac16]. Coalgebra is a

well-established general framework for state-based systems that subsumes constructs

like bisimilarity and behaviour and provides us with a convenient language for

generalizing the important conceptual details in the completeness proof of [GF20].

After a brief coalgebra-focused introduction to Milner’s star expressions, I turn

to the paper of Grabmayer and Fokkink [GF20] to give a coalgebraic spin on some of

their results. I strengthen some and simplify the proofs of others:

• I show that one-free regular expressions form a coalgebra, and that solutions

to transition systems are in one-to-one correspondence with coalgebra homo-

morphisms into the expressions modulo the axioms (Lemma 2.2.17).

• I elucidate the four steps in Grabmayer and Fokkink’s completeness proof

mentioned above and prove they are sufficient in a general coalgebraic setting.

• I generalize the connect-through-to operation from [GF20] to a purely coal-

gebraic construction (Definition 2.4.14). I coin the term rerouting for this

construction, and show that a prevalence of reroutings can be used to establish

the fourth part of completeness proofs (Lemma 2.4.15).

• Finally, I give a general account of a related approach to completeness proofs

that originates in Jacobs’s bialgebraic reformulation [Jac06] of Kozen’s com-

pleteness proof for Kleene algebra [Koz91] and the more general completeness

theorems Jacobs’s technique inspired [Sil10; Mil10; BMS13]. I furthermore

show that the proof technique of Grabmayer and Fokkink can be restructured

to fit this mould.

Overall, I use the structure of the completeness proof in [GF20] as a case study

in completeness proof methods from coalgebra that do not rely on a surjective

correspondence between expressions and finite automata up to bisimulation. This

culminates in two abstract proof methods for completeness, what I call the local and

global approaches, and a description of those situations in which the latter method

can be used in place of the former.

The chapter is organized as follows: In Section 2.1, I introduce Milner’s reinter-

pretation of regular expressions and state the completeness result recently announced

by Grabmayer [Gra22]. In Section 2.2, I introduce the one-free fragment of reg-

ular expressions in parallel with its coalgebraic aspects. In Section 2.3, I discuss

34 Chapter 2. Star Expressions and Coalgebraic Completeness Theorems

the four parts of Grabmayer and Fokkink’s completeness proof and show that they

are sufficient in a general coalgebraic setting. In Section 2.4, I give an alternative

description of LLEE-charts and show how Grabmayer and Fokkink’s technique for

reducing LLEE-charts can be strengthened. It is in this section that I generalize their

connect-through-to operation. Lastly, in Section 2.5, I give a general account of a

related approach to completeness proofs, found in [Jac06; Sil10; Mil10; BMS13],

and show how the method used by Grabmayer and Fokkink can be restructured to fit

this mould.

The contents of this chapter, excluding Section 2.1, are based on the

paper On Star Expressions and Coalgebraic Completeness Theorems, written

by myself, Jurriaan Rot, and Alexandra Silva [SRS21].

2.1 Star Expressions and Grabmayer’s Theorem

In a technical report from 1951, Stephen Cole Kleene gave an early example of a

finite syntax for specifying behaviours of finite state machines [Kle56]. The terms of

his syntax are the well-renowned regular expressions, formed by the grammar

RExp ∋ r,r1,r2 := 0 | 1 | a ∈ Act | r1 + r2 | r1r2 | r∗

where Act is a given set of action symbols. Regular expressions were intended to

represent what Kleene called regular events, what are now called regular languages.

Remark 2.1.1. Actually, in the original paper [Kle56], the syntax Kleene used to

describe regular expressions had a binary star operation r1
∗r2. The binary star appears

to have fallen out of fashion after Kleene’s publication—see, for example, [Sal66;

Con71]. This is due in part to the fact that the binary star gives an equivalent set of

expressions to the unary star, as r∗1 and r∗ are semantically equivalent. However, the

binary star will reappear in Section 2.2 when we consider the set of terms generated

without the use of 1 (reintroduced by [GF20]).

Definition 2.1.2. Fix a set Act of action symbols. A language is a subset of the free

monoid Act∗ generated by Act. The language L(r) denoted by a regular expression

r ∈ RExp is defined inductively as

L(0) = /0 L(1) = {ε} L(r1 + r2) = L(r1)∪L(r2)

2.1. Star Expressions and Grabmayer’s Theorem 35

L(r1r2) = L(r1)L(r2) := {w1w2 | wi ∈ L(ri)}

L(r∗) = L(r)∗ := {ε}∪L(r)∪L(r)L(r)∪·· ·

A language is regular if it of the form L(r) for some regular expression r. Two regular

expressions r1,r2 are called language equivalent if L(r1) = L(r2).

For example, r1 + r2 and r2 + r1 are always language equivalent, no matter our

choice of r1,r2, and so are r1(r2+r3) and r1r2+r1r3. Kleene noticed that equations like

“r1 + r2 = r2 + r1” and “r1(r2 + r3) = r1r2 + r1r3” hold for the language interpretation,

but left axiomatization as an open problem.

Definition 2.1.3. Given a set of inference rules TH for deriving equations between

terms in an algebraic signature S and a pair of expressions r1,r2, write TH ⊢ r1 = r2

if r1 = r2 is the conclusion of a proof using only the rules in TH and the axioms of

equational logic,

(Ref) (Sym) (Tra) (Con)

r = r
r2 = r1

r1 = r2

r1 = r3 r3 = r2

r1 = r2

(∀i≤ n) ri = r′i

σ(r1, . . . ,rn) = σ(r′1, . . . ,r
′
n)

where σ is an n-ary operation from S. We often refer to TH as an axiomatization,

inference system, or theory.

Regular expressions are terms in the algebraic signature S =Act∪{0,1,+, ·,(−)∗},

where each a∈ Act and 0 and 1 are constants (0-ary operations), + and · (representing

sequential composition) are binary operations, and (−)∗ is a unary operation.

Definition 2.1.4. A function of the form ⌊⌈−⌋⌉ : RExp→ Z is called a semantics of RExp,

Z the semantic domain, and we say r1 and r2 are ⌊⌈−⌋⌉-equivalent if ⌊⌈r1⌋⌉= ⌊⌈r2⌋⌉. An

axiomatization TH is sound for ⌊⌈−⌋⌉ if TH ⊢ r1 = r2 implies ⌊⌈r1⌋⌉= ⌊⌈r2⌋⌉, and complete

for ⌊⌈−⌋⌉ if ⌊⌈r1⌋⌉= ⌊⌈r2⌋⌉ implies TH ⊢ r1 = r2. Given an equivalence relation ≡ on RExp,

we say TH is sound/complete with respect to ≡ if TH is sound/complete with respect

to the quotient semantics [−]≡ : RExp→ RExp/≡.

Kleene posed the problem of finding a sound and complete axiomatization of

language equivalence in [Kle56]. The first complete axiomatization was found by

Salomaa [Sal66]. We reproduce Salomaa’s axiomatization in Figure 2.1, where

36 Chapter 2. Star Expressions and Coalgebraic Completeness Theorems

(B0) r+ r = r

(B1) r+0 = r

(B2) r1 + r2 = r2 + r1

(B3) r1 +(r2 + r3) = (r1 + r2)+ r3

(B4) r1 = r

(B5) 1r = r

(B6) 0r = 0

(B7) r1(r2r3) = (r1r2)r3

(B8) (r1 + r2)r3 = r1r3 + r2r3

(FP1) r1
∗r2 = r1(r1

∗r2)+ r2

(FP2) (r1 +1)∗ = r1
∗

(RSP*)
s = r1s+ r2 E(r1) = 0

s = r1
∗r2

(A1) r0 = 0

(A2) r1(r2 + r3) = r1r2 + r1r3

Figure 2.1: Salomaa’s complete axiom system for language equivalence of regular expres-
sions. Here, r,r1,r2,s ∈ RExp, a ∈ Act, and ⋆ ∈ {+, ∗}. The system Mil consists of
(B0)-(B8), (FP1), (FP2), and (RSP∗).

special attention is drawn to the axioms (A1) and (A2). In the rule (RSP*) from

Figure 2.1, we make use of a predicate E, defined

E(0) = E(a) = 0 E(1) = E(r∗) = 1

E(r1 + r2) = E(r1)∨E(r2) E(r1r2) = E(r1)∧E(r2)

for any a ∈ Act and r,r1,r2 ∈ RExp. We say that r is productive if E(r) = 0, and if

E(r) = 1 we say that r has the empty word property.

In the late 60s, regular expressions became the basis for string searching algo-

rithms [Tho68]. When interpreted this way, regular expressions should be identified

up to language equivalence, because that is the equivalence that best captures their

computational value in the context of string searching. However, in many other

applications, particularly those that involve interaction during runtime, language

equivalence identifies too many regular expressions. Consider, for example, the pair

of vending machines in Figure 2.2.

In the first vending machine, upon receiving a two-dollar coin, the machine

presents its user with the options of juice and coffee. The second vending machine

is far more disappointing: Upon receiving a two-dollar coin, it either enters a state

where the user can only choose orange juice or a state where the user can only choose

coffee. Everybody likes to have decisions made for them once in a while, but I would

not purchase the second machine for my office!

2.1. Star Expressions and Grabmayer’s Theorem 37

Welcome!

$2 Credit

Juice
Dispenced

Coffee
Dispenced

Receive
Twonie

Juice
Chosen

Coffee
Chosen

Welcome!

$2 Credit1 $2 Credit2

Juice
Dispenced

Coffee
Dispenced

Receive
Twonie

Receive
Twonie

Juice
Chosen

Coffee
Chosen

Figure 2.2: Two vending machines.

In Figure 2.2, a labelled arrow x a−→ y represents an action a that induces a

transition between states x and y of the vending machine. Interactions with either

machine start with a welcome message, and states where interactions with the

machine are allowed to end appear as the source of a double arrow. Both machines

are allowed to end precisely after one of the runs of actions in the language below

{(Receive Twonie)(Juice Chosen),(Receive Twonie)(Coffee Chosen)} (2.1)

That is, they recognize the same language. While they recognize the same language,

they are certainly not equivalent in this context. The notion that captures the

appropriate equivalence in this context is bisimilarity [Mil80], and can be formalized

with labelled transition systems.

Definition 2.1.5. A labelled transition system (or LTS) is a pair (X ,δ) consisting of a

set X and a function δ : X −→P(✓+Act×X). Here, ✓ is shorthand for the set {✓}.

We write x a−→ y when (a,y) ∈ δ (x) and x⇒ when ✓ ∈ δ (x).

In a LTS (X ,δ), the language Lδ (x) recognized by a state x ∈ X is formally defined

Lδ (x) =
{

a1 · · ·an ∈ Act∗ | (∃n ∈ N)(∃x1, . . . ,xn) x a1−→ x1 −→ ·· · −→ xn−1
an−→ xn⇒

}
When Lδ (x) = Lδ (y), we say x and y are language equivalent. For example, (2.1) is

38 Chapter 2. Star Expressions and Coalgebraic Completeness Theorems

1⇒
a ∈ Act

ar a−→ r

r1⇒
r1 + r2⇒

r2⇒
r1 + r2⇒

r1
a−→ s

r1 + r2
a−→ s

r2
a−→ s

r1 + r2
a−→ s

r1⇒ r2⇒
r1r2⇒

r1⇒ r2
a−→ s

r1r2
a−→ s

r1
a−→ s

r1r2
a−→ sr2

r∗⇒
r a−→ s

r∗ a−→ sr∗

Figure 2.3: The LTS structure ℓ : RExp→P(✓+Act×RExp). Here, r,r1,r2,s ∈ RExp.

Lδ (Welcome!) for both Welcome! states, so the two states are language equivalent.

Bisimilarity, a more discerning equivalence, is formally defined below.

Definition 2.1.6. A bisimulation R between LTSs (X ,δX) and (Y,δY) is a relation

R⊆ X×Y such that for any (x,y) ∈ R,

(i) x⇒ if and only if y⇒,

(ii) if x a−→ x′, then there is a y′ ∈ Y such that y a−→ y′ and (x′,y′) ∈ R,

(iii) if y a−→ y′, then there is an x′ ∈ X such that x a−→ x′ and (x′,y′) ∈ R.

We call x and y bisimilar, and write x↔ y, if (x,y) appears in some bisimulation.

Bisimilarity tracks not only what runs of the machine end in success, like lan-

guage equivalence does, but also the branching structure of the machine’s behaviour.

Bisimilarity implies language equivalence, but language equivalence does not imply

bisimilarity. For example, in Figure 2.2, the state “$2 Credit1” cannot take the “Juice

Chosen” action, and this prevents the two vending machines from being bisimilar.

Now let us turn to the issue of deciding which pairs of regular expressions

should be bisimilar. Following Antimirov [Ant96], we equip RExp with the inductively

defined transition function ℓ : RExp→P(✓+Act×RExp) found in Figure 2.3. Given

e ∈ RExp, we write ⟨e⟩ for the LTS generated by the expressions reachable from e and

call it the small-step semantics of e.

Lemma 2.1.7. Let r1,r2 be regular expressions.

1. [Ant96] L(r1) = Lℓ(r1). That is, the language semantics of regular expressions

coincides with the language accepted by regular expressions as states in (RExp, ℓ).

2. [Ant96] ⟨r⟩ has finitely many states.

3. [Ant96] If r1↔ r2, then L(r1) = L(r2).

2.1. Star Expressions and Grabmayer’s Theorem 39

4. [Mil84] Restricted to (RExp, ℓ),↔ is a congruence, meaning if r1↔ s1 and r2↔ s2,

then r1 + r2↔ s1 + s2 and r1
∗s1↔ r2

∗s2.

For example, the vending machines in Figure 2.2 are the small-step semantics of

(Receive Toonie)((Juice Chosen)+(Coffee Chosen))

(Receive Toonie)(Juice Chosen)+(Receive Toonie)(Coffee Chosen)

respectively. As was noted before, these are not bisimilar machines, despite their

equality being an instance of (A2) in Figure 2.1. It is also easy to find a pair of

expressions that are an instance of (A1) and yet not bisimilar: take a0 and 0, for

example. This is all to say that axioms (A1) and (A2) are not sound with respect to

bisimilarity, although the rest of the axioms in Figure 2.1 are. Following [Gra21],

write Mil for the system consisting of (B0)-(B8), (FP), and (RSP*). The following

result says that Mil is a sound axiomatization of bisimilarity.

Theorem 2.1.8 (Soundness [Mil84]). Let r1,r2 ∈ RExp. If Mil ⊢ r1 = r2, then r1↔ r2.

In [Mil84], Milner furthermore asks whether Mil is complete with respect to

bisimilarity, i.e., whether r1↔ r2 implies Mil ⊢ r1 = r2. This question I will refer to as

Milner’s completeness problem. After 38 years of research into Milner’s completeness

problem, a solution was recently announced by Grabmayer, whose proof builds on

earlier work by himself and Fokkink [GF20].

Theorem 2.1.9 (Completeness [Gra22]). Let r1,r2 ∈ RExp. If r1↔ r2, then we can

prove Mil ⊢ r1 = r2.

Salomaa’s completeness proof [Sal66] was well-known to Milner and many

others from the process algebra community when [Mil84] was written. Furthermore,

Milner essentially follows Salomaa’s proof to establish a different (but related)

completeness theorem in the same paper [Mil84]. Why did it take so long for a proof

of Theorem 2.1.9 to appear?

Salomaa’s completeness proof relies on one’s ability to solve recursive systems

of equations in the algebra of regular languages. Consider, for example,

x1 = ax2 +1 x2 = bx1 +1 (2.2)

40 Chapter 2. Star Expressions and Coalgebraic Completeness Theorems

Solving this system algebraically is a matter of plugging the second equation into the

first and using (A2) and (RSP*) to turn x1 = a(bx1+1)+1 into x1 = abx1+(a+1) and

then into x1 = (ab)∗(a+1). The last equation tells us that assigning x1 the language

{ab}∗ · {ε,a} and x2 the language {b} · ({ab}∗ · {ε,a})∪{ε} solves the system (2.2) in

the algebra of regular languages. This overall method of solving equations is behind

the following theorem.

Theorem 2.1.10. Let L⊆ Act∗ be a language. Then L is a regular language if and only

if there is a state x ∈ X in a finite LTS (X ,δ) such that L = Lδ (x).

Theorems like Theorem 2.1.10 are known as Kleene theorems, and as we will see

in the following pages, they are central to completeness results. Unfortunately, there

are examples of LTSs with states that are not bisimilar to any regular expression in

(RExp, ℓ). Consider again (2.2), which corresponds to the LTS

x1 x2

a

b

(2.3)

As it turns out, a simple inductive argument shows that neither x1 nor x2 in (2.3) are

bisimilar to any regular expression in (RExp, ℓ). We include a proof below, although

this was known to Milner [Mil84] and it follows from a general characterization of

LTSs bisimilar to regular expressions due to Baeten et al. [BCG07].

Proposition 2.1.11. No state of (RExp, ℓ) is bisimilar to either x1 or x2 in (2.3).

Proof. We show by induction on r ∈ StExp that ¬(xi↔ r′) for any r′ ∈ ⟨r⟩ and i∈ {1,2}.

The base cases are clear, since if xi↔ r′ for r ∈ {0,1}∪Act, then ⟨xi⟩ would be acyclic.

For the first inductive step, assume ¬(xi↔ s) for any s ∈ ⟨r j⟩ for i, j ∈ {1,2}. To

see that x1 is not bisimilar to any s ∈ ⟨r1 + r2⟩, we need only consider the s = r1 + r2

case, since every other s ∈ ⟨r1 + r2⟩ is in either ⟨r1⟩ or ⟨r2⟩. If x1↔ r1 + r2, then r j
a−→ r′

for some j ∈ {1,2} and some r′ with r′↔ x2. This contradicts the induction hypothesis.

Similarly for the x2 case.

Now suppose x1 ↔ s for some s ∈ ⟨r1r2⟩. Either s = r′1r2 for some r′1 ∈ ⟨r1⟩ or

s ∈ ⟨r2⟩. We have excluded the latter situation by assumption, so consider the former.

Without loss of generality, we can assume x1↔ r1r2, because ⟨r′1⟩ ⊆ ⟨r1⟩. We are going

2.1. Star Expressions and Grabmayer’s Theorem 41

to generate a contradiction by observing that x1↔ r1r2 implies that either x2↔ r′ for

some r′ ∈ ⟨r2⟩ or x1↔ r1.

Since x1⇒ and x1↔ r1r2, r1⇒ also. So, if r2
a−→ s for some s ∈ ⟨r2⟩, then s↔ x2,

because r1r2
a−→ s and x1↔ r1r2. This contradicts the induction hypothesis, so it must

be the case that ¬(r2
a−→). Symmetrically, if r1

a−→ r′, then x2↔ r′r2 and x1⇒, so r′⇒

as well. Again, if r2
b−→ s, then r′r2

b−→ s and x1↔ s for some s ∈ ⟨r2⟩, so it must also be

the case that ¬(r2
b−→).

We are now going to use ¬(r2
a−→) and ¬(r2

b−→) to show that x1↔ r1. In particular,

we are going to prove that R = {x1}×U ∪{x2}×V is a bisimulation, where

U = {r′′ | (∃n) r1(
a−→ ◦ b−→)nr′′} V = {r′ | (∃n) r1

a−→ ◦(b−→ ◦ a−→)nr′}

Note that (x1,r1) ∈ R. Also note that an easy induction on n reveals that x1↔ r′′r2

and x2↔ r′r2 for any r′′ ∈U and r′ ∈V . To see that R is a bisimulation, observe that

x1
a−→ x2 and x1↔ r′′r2 and ¬(r2

a−→) imply that r′′ a−→ r′ for some r′ ∈V . Conversely, if

U ∋ r′′ c−→ r′, then c = a because x1↔ r′′r2, and therefore r′ ∈V . Since (x2,r′) ∈ R, we

are done. In the symmetric case, (x2,r′) ∈ R and x2
b−→ x1 imply there is a transition

r′ b−→ r′′ ∈U , since x2↔ r′r2. And similarly to the case for x1, since ¬(r2
b−→), if r′ c−→ r′′,

then c = b and r′′ ∈U . It follows that R is a bisimulation. Since x1Rr1, x1↔ r1. This

contradicts the induction hypothesis.

For the last case, we begin by assuming ¬(xi↔ s) for every s ∈ ⟨r⟩ and i ∈ {1,2}

to show that ¬(x1↔ r∗). Indeed, if x1↔ r∗, then r∗ a−→ sr∗ for some s and x2↔ sr∗.

However, since x2⇒, s⇒ as well. This means that sr∗ a−→, which contradicts ¬(x2
a−→).

Hence, ¬(x1↔ r∗). Symmetrically, ¬(x2↔ r∗).

Finally, assume ¬(xi ↔ s) for every s ∈ ⟨r⟩ and i ∈ {1,2}. We suppose for a

contradiction that there is an s ∈ ⟨r⟩ such that x1 ↔ sr∗. Since x1 ⇒ and ¬(x1
b−→),

¬(r∗ b−→) by the transition rules for sequential composition. Similarly, since for any

transition sr∗ a−→ s′r∗ we find x2↔ s′r∗, ¬(r∗ a−→).

We are now going to use ¬(r∗ a−→) and ¬(r∗ b−→) to establish that the relation

R = {x1}×U ∪{x2}×V is a bisimulation, where

U = {s′′ | (∃n) s(a−→ ◦ b−→)ns′′} V = {s′ | (∃n) s a−→ ◦(b−→ ◦ a−→)ns′}

42 Chapter 2. Star Expressions and Coalgebraic Completeness Theorems

Note that (x1,s) ∈ R and that an easy induction on n establishes that x1 ↔ s′′ and

x2 ↔ s′ for any s′′ ∈U and s′ ∈ V . Given (x1,s′′) ∈ R, since x1 ↔ s′′r∗ and ¬(r∗ a−→),

s′′ a−→ s′ for some s′ ∈ V . Conversely, if s′′ c−→ s′, then c = a and therefore s′ ∈ V as

desired. Similarly for any pair (x2,s′) ∈ R (the details are similar to the sequential

composition case). This establishes that R is a bisimulation, so x1↔ s. Since s ∈ ⟨r⟩,

this contradicts the induction hypothesis.

Examples like (2.3) expose the central difficulty of the proof of Theorem 2.1.9,

which requires an intricate characterization of the systems of equations that can be

solved. Theorem 2.1.9 is an incredible achievement that is likely to have applications

to open completeness problems like the ones found in Chapters 3 and 4. The promise

of these potential applications is strengthened in the next section, which sets the stage

for the rest of the thesis by analyzing the joint work of Grabmayer and Fokkink [GF20]

that proves a version of Theorem 2.1.9 for a fragment of RExp. While Grabmayer and

Fokkink’s paper presents only a partial solution to Milner’s completeness problem,

their completeness proof is our first clear example of a coalgebraic completeness

proof. Their proof strategy is an instance of a general coalgebraic strategy for proving

completeness theorems that will be introduced in the next section.

2.2 One-free Star Expressions

Grabmayer’s proof of Theorem 2.1.9 relies on earlier work with Fokkink [GF20] that

presents a partial solution to Milner’s completeness problem, namely a proof that

if r1↔ r2 and r1,r2 are one-free, then Mil ⊢ r1 = r2. For the rest of this chapter, we

define what it means for a regular expression to be one-free and connect the study of

one-free regular expressions to the theory of universal coalgebra.

For a fixed finite set Act of atomic actions, the set of one-free star expressions, or

star expressions for short, is generated by the BNF grammar

StExp ∋ r1,r2 ::= 0 | a ∈ Act | r1 + r2 | r1r2 | r1 ∗ r2

The expression r1 ∗ r2 denotes the regular expression r1
∗r2 from the previous section

(see also [Mil84]), but we write ∗ infix to emphasize that it is a binary operation

in this formalism (like in Kleene’s seminal paper [Kle56]). Operationally, each star

expression specifies a certain kind of labelled transition system with termination.

2.2. One-free Star Expressions 43

Definition 2.2.1. A one-free transition system is a pair (X ,δ) consisting of a set X of

states and a transition function δ : X →P(Act× (✓+X)). Again, we write x a−→ y if

(a,y) ∈ δ (x), and we write x a−→✓ if (a,✓) ∈ δ (x). A prechart is a one-free transition

system (X ,δ) that is finitely branching, meaning that δ (x) is finite for all x ∈ X .

Remark 2.2.2. The difference between labelled transition systems and one-free transi-

tion systems is the existence of a designated termination “state”: In labelled transition

systems, any state can terminate a computation by including a x⇒ transition, but in

one-free transition systems only the ✓ “state” can end a computation. I put quotations

around the word “state” because ✓ /∈ X , so technically ✓ is not a state. However,

every one-free transition system can be made into a labelled transition system by

creating a new state ✓ ⇒.

The operational interpretation of a star expression is obtained by giving the set of

star expressions a structure equivalent to that of a prechart (StExp, ℓ). The transitions

of (StExp, ℓ) are built inductively from the interpretations of expressions as processes:

The constant 0 is deadlock, a ∈ Act is the process that performs the action a and

then terminates, r+ s and rs are alternative and sequential composition respectively,

and r ∗ s iterates r before executing s. Formally, the transitions of (StExp, ℓ) are those

derivable from the rules in Figure 2.4.

Example 2.2.3. For example, the prechart ⟨a1((a2 +a1)∗a2)⟩ is

a1((a2 +a1)∗a2) (a2 +a1)∗a2 ✓
a1 a2

a1,a2

Definition 2.2.4. Let (X ,δ) be a prechart and U ⊆ X . We define

U ′ = {x ∈ X | (∃y ∈U)(∃a0, . . . ,an ∈ Act)(∃y1, . . . ,yn) y a0−→ y1 −→ ·· · −→ yn
an−→ x}

and set ⟨U⟩δ = (U ′,δU ′), where δU ′ is induced by restricting the transition relations a−→
to U ′. A chart is a prechart of the form2 ⟨x⟩δ for some x ∈ X . Given a star expression

r ∈ StExp, the chart interpretation or small-step semantics of r is ⟨r⟩ℓ. We generally

omit the transition function and write ⟨x⟩ or ⟨r⟩ when it is implicit.

2It would be more precise to write ⟨{x}⟩δ , but we generally identify an element x with its one-element
set {x} throughout the thesis.

44 Chapter 2. Star Expressions and Coalgebraic Completeness Theorems

a ∈ Act

a a−→✓

r1
a−→✓

r1 + r2
a−→✓

r2
a−→ s

r1 + r2
a−→ s

r1
a−→✓

r1r2
a−→ r2

r1
a−→ s

r1r2
a−→ sr2

r2
a−→✓

r1 ∗ r2
a−→✓

r2
a−→ s

r1 ∗ r2
a−→ s

r1
a−→ s

r1 ∗ r2
a−→ s(r1 ∗ r2)

r1
a−→✓

r1 ∗ r2
a−→ r1 ∗ r2

Figure 2.4: The prechart (StExp, ℓ). Here, s,ri ∈ StExp and a ∈ Act.

The small-step semantics of a star expression tracks many details about runtime

that are not usually of any concern to the user. For example, the observable behaviours

of a(b+ c)+ a(c+ b) and a(b+ c) are the same: They both consist of an emitted

a followed by the option of emitting b or c. However, ⟨a(b+ c) + a(c+ b)⟩ and

⟨a(b+c)⟩ are not equal (or even isomorphic)! Semantically, we would like to identify

a(b+c)+a(c+b) and a(b+c) while keeping track of the kinds of interactions we saw

in Figure 2.2. Restricting the bisimulations of LTSs from Definition 2.1.6 to precharts,

we obtain the following.

Definition 2.2.5. A bisimulation between precharts (X ,δX) and (Y,δY) is a relation

R⊆ X×Y such that if (x,y) ∈ R,

1. x a−→✓ if and only if y a−→✓,

2. if x a−→ x′, then there is a y′ ∈ Y such that (x′,y′) ∈ R and y a−→ y′, and

3. if y a−→ y′, then there is an x′ ∈ X such that x a−→ x′ and (x′,y′) ∈ R.

If (x,y) appears in a bisimulation, we say x and y are bisimilar and write x↔ y. A

bisimulation that is also an equivalence relation is a bisimulation equivalence.

Bisimulations are precisely the relations that preserve behaviour. Precharts

can be organized in a category with functional bisimulations for homomorphisms,

bisimulations that are the graphs of functions. The composition of two functional

bisimulations is also a functional bisimulation, and the identity map is trivially a

functional bisimulation. This is an important observation that follows from more

general theoretical observations, which we cover briefly next.

2.2.1 Precharts are Coalgebras

So far, we have two different notions of bisimulation floating around—one for LTSs,

another for precharts—and there are soon to be more. While the prechart-specific

2.2. One-free Star Expressions 45

case is of most interest to us in this chapter, there is an encompassing theory of

behavioural equivalences between precharts, LTSs, and whatever other kinds of

automata and transition systems might appear. One appropriate choice of framework

for studying these objects is (universal) coalgebra, a category theoretic take on

stateful systems. In coalgebra, system types are captured with endofunctors on the

category Set of sets and functions [Gum99], as well as on other categories (see, for

example, [Rut00; Mil10; Bon+12; Adá05; Jac16]).

Definition 2.2.6. Given an endofunctor B on Set, called the (coalgebraic) signature,

a B-coalgebra is a pair (X ,δX) consisting of a set X of states and a structure map

δX : X→ BX . A B-coalgebra homomorphism h : (X ,δX)→ (Y,δY) is a function h : X→Y

such that δY ◦h = B(h)◦δX , where ◦ denotes function composition. The category of

B-coalgebras and their homomorphisms is written Coalg(G).

Precharts and their homomorphisms fit neatly into the framework of coalgebra.

Let PωX = {U ⊆ X | U is finite}. Given a set X , a subset U ⊆ X , and a function

f : X → Y , define

LX = Pω(Act× (✓+X))

L(f)(U) = {(a,✓) | (a,✓) ∈U}∪{(a, f (x)) | (a,x) ∈U}
(2.4)

Then L is an endofunctor on Set, and precharts are precisely L-coalgebras. We use

the terms “L-coalgebra” and “prechart” interchangeably.

Charts and Subcoalgebras

Chart interpretations of star expressions also have a coalgebraic description: Given

r ∈ StExp, ⟨r⟩ is the smallest subcoalgebra of StExp containing r, i.e., if U ⊆ StExp

contains r and (U,δU) is an L-coalgebra such that

U StExp

PU L(StExp)

inU

δU ℓ

L(inU)

(2.5)

commutes, then ⟨r⟩ ⊆U . In coalgebraic terminology, (2.5) states that the set U is a

subcoalgebra of (StExp, ℓ), meaning that it carries an L-coalgebra structure such that

the inclusion of U into StExp is an L-coalgebra homomorphism (U,δU) ↪→ (StExp, ℓ).

46 Chapter 2. Star Expressions and Coalgebraic Completeness Theorems

Because inU is injective, there is at most one δU such that inU : (U,δU) ↪→ (StExp, ℓ),

so we sometimes refer to U as a subcoalgebra of (X ,δ).

Homomorphisms and Bisimulations

We saw that functional bisimulations were the appropriate notion of behaviour-

preserving maps between precharts. Functional bisimulations coincide with homo-

morphisms between L-coalgeberas.

Lemma 2.2.7. A function h : X → Y between precharts (X ,δX) and (Y,δY) is an L-

coalgebra homomorphism if and only if it is a functional bisimulation.

Universal coalgebra also provides a general notion of bisimulation and functional

bisimulation that makes sense for any B-coalgebras.

Definition 2.2.8. For a general endofunctor B, a bisimulation between two coalgebras

(X ,δX) and (Y,δY) is a relation R⊆ X×Y carrying a coalgebra structure (R,δR) such

that the projection maps π1 : R→ X and π2 : R→ Y are B-coalgebra homomorphisms.

If there is a bisimulation R relating x ∈ X and y ∈ Y , we say x and y are bisimilar and

write x↔B y. We often omit the signature and write↔ instead of↔B when it is clear

from context.

Setting B = L, Definition 2.2.8 becomes Definition 2.2.5. We can also instantiate

Definition 2.2.8 to bisimulations between LTSs (Definition 2.1.6) by setting

T X = P(✓+Act×X)

T (f)(U) = {✓ |✓ ∈U}∪{(a, f (x)) | (a,x) ∈U}
(2.6)

and noticing that T -coalgebras and LTSs coincide.

Furthermore, any union of bisimulations is also a bisimulation. This follows

from general facts about B-coalgebras, which I record here for future use.

Lemma 2.2.9. Let B be any endofunctor on Set.

1. If {(Xi,δi)}i∈I is any set of coalgebras, there is a unique coalgebra structure on the

disjoint union
⊔

i∈I Xi that defines their coproduct in Coalg(B).

2. If h : (X ,δX)→ (Y,δY) is a coalgebra homomorphism, then there is a unique

coalgebra structure h(δ) on its image h[X] such that h : (X ,δX)→ (h[X],h(δ)) and

(h[X],h(δ)) ↪→ (Y,δY).

2.2. One-free Star Expressions 47

Proofs of Lemma 2.2.9 appear in many places [Rut00; Gum99; Jac16; Adá05]3.

I often make use of Lemma 2.2.9’s constructions, so I have reproduced them below.

Constructions. Given a disjoint union of sets
⊔

i∈I Xi with inclusion maps ini : Xi ↪→⊔
i∈I Xi, there is a canonical map

[inB
i]i∈I :

⊔
i∈I

BXi→ B

(⊔
i∈I

Xi

)
inB

i (ξ) = B(ini)(ξ) if ξ ∈ BXi (2.7)

This is used in the coproduct construction: Given a set of B-coalgebras {(Xi,δi)}i∈I,

their coproduct can be obtained as ∑i∈I(Xi,δi) = (
⊔

i∈I Xi,∑i∈I δi), where

∑
i∈I

δi = [inB
i]i∈I ◦

⊔
i∈I

δi :
⊔
i∈I

Xi→
⊔
i∈I

BXi→ B

(⊔
i∈I

Xi

)

For the image construction, given h : (X ,δX)→ (Y,δY), consider its factorization

h = in◦h′ : X ↠ h[X] ↪→ Y . Let k : h[X]→ X split h′, i.e., h′ ◦ k = idh[X]. Then the map

h(δ) = B(h′)◦δX ◦ k is a coalgebra structure on h[X]. Since

B(in)◦h(δ) = B(in)◦B(h′)◦δX ◦ k

= B(in◦h′)◦δX ◦ k

= B(h)◦δX ◦ k

= δY ◦h◦ k

= δY ◦ in◦h′ ◦ k

= δY ◦ in

X h[X] Y

BX B(h[X]) BY

h

δX

in

h(δ)

k

δY

B(h) B(in)

we have in : (h[X],h(δ))→ (Y,δY). On the other hand,

B(in)◦h(δ)◦h′ = δY ◦ in◦h′ = δY ◦h = B(h)◦δX = B(in)◦B(h′)◦δX

If Y = /0, then X = /0 and h′ = id. Otherwise, B(in) is injective (because it splits), so

h′ : (X ,δX)→ (h[X],h(δ)) as desired.

In fact, the last construction can be carried out when there exists only a coalgebra

(X ,δX) and a surjection q : X ↠ Y such that q(x) = q(y) implies B(q)◦δX(x) = B(q)◦

3Actually, many of these sources prove something that subsumes Lemma 2.2.9, that the forgetful
functor (X ,δ) 7→ X creates colimits.

48 Chapter 2. Star Expressions and Coalgebraic Completeness Theorems

δX(y) for any x,y ∈ X . There exists a unique coalgebra structure (Y,δY) such that

q : (X ,δX)→ (Y,δY), defined δY = B(q) ◦ δX ◦ k where k is any right inverse of q (δY

does not depend on k).

Finally, to see that the union of a set {(Ri,δi)}i∈I of bisimulations between

coalgebras (X ,δX) and (Y,δY) is itself a bisimulation, construct their coproduct

∑i∈I(Ri,δi) and take the image of this coalgebra under the union of the inclusion

maps
⊔

i∈I Ri→ X×Y . This has the following immediate consequence.

Lemma 2.2.10. Between any two B-coalgebras, the relation↔ is a bisimulation. Within

a single B-coalgebra (X ,δX),↔ is a bisimulation.

We return to general bisimilarity in Chapter 4. For now, in the concrete cases

of LTSs and precharts, the functors L and T share a property that makes working

with their versions of bisimilarity much easier. Namely, they preserve weak pull-

backs [Gum98].

Definition 2.2.11. Given a set of arrows D = { fi : Xi → Y}i∈I, a cone of D is a

set of arrows {pi : W → Xi}i∈I, such that for any i, j ∈ I, fi ◦ pi = f j ◦ p j. A cone

{pi : W → Xi}i∈I of D is called a weak pullback of D if every cone {qi : W ′ → Xi}i∈I

admits an arrow g : W ′→W such that pi ◦g = qi for all i ∈ I.

W ′

W Xi

X j Y

qi

q j

g

pi

p j fi

f j

An endofunctor B preserves weak pullbacks if for finite I, {B(pi)}i∈I is a weak pullback

of {B(fi)} whenever {pi : W → Xi}i∈I is a weak pullback of { fi : Xi→ Y}i∈I.

Given a function f : X → Y , define the kernel of f to be

ker(f) := {(x,y) | f (x) = f (y)}

Also, given relations R⊆ X×Y and Q⊆ Y ×Z, define their composition to be

R ; Q = {(x,z) | (∃y ∈ Y) R(x,y) and Q(y,z)}

2.2. One-free Star Expressions 49

Lemma 2.2.12 (Rutten [Rut00]). Let B be a weak pullback preserving endofunctor.

1. If R⊆ X×Y and Q⊆Y ×Z are bisimulations between (X ,δX), (Y,δY), and (Z,δZ),

then so is R ; Q = {(x,z) | (∃y ∈ Y) xRyRz}.

2. On a fixed B-coalgebra,↔ is a bisimulation equivalence,

3. A relation R⊆ X ×X on (X ,δX) is a bisimulation equivalence if and only if it is

the kernel of a coalgebra homomorphism with domain (X ,δX).

4. A map h : (X ,δX)→ (Y,δY) is a B-coalgebra homomorphism if and only if the

graph Gr(h) of h is a bisimulation relation.

Observe that item 4 of Lemma 2.2.12 is Lemma 2.2.7 with B = L, and provides

us an analogous characterization of LTS homomorphisms in the case of B = T .

Remark 2.2.13. Another property of B-coalgebras that is implied by weak pullback

preservation is the existence of ⟨x⟩δX for each state x of a finite B-coalgebra (X ,δX). If B

preserves weak pullbacks, then for any finite collection {Ui | i≤ n} of subcoalgebras of

(X ,δX),
⋂

Ui is also a subcoalgebra [Rut00]. Thus, ⟨x⟩δX is obtained as the (necessarily

finite) intersection of all subcoalgebras of (X ,δX) containing x.

2.2.2 Axiomatizing Bisimilarity

Within the prechart (StExp, ℓ), bisimilarity captures a number of intuitive equivalences,

keeping in mind the interpretation of star expressions as processes. For instance,

0r↔ 0 and r+ s↔ s+ r for any r,s ∈ StExp. These are two of the axioms suggested

by Milner in [Mil84], appearing as (B7) and (B2) in Figure 2.1.

Definition 2.2.14. Let 1fMil be the inference system consisting of (B0)-(B3), (B6)-

(B8), (FP1), and the rule

s = r1s+ r2

s = r1 ∗ r2

(RSP)

We write r ≡∗ s to denote that 1fMil ⊢ r = s and say r and s are provably equivalent.

Remark 2.2.15. In [GF20], Grabmayer and Fokkink include an additional axiom,

(BKS2), which states that (r ∗ s)t = r ∗ (st). This is, in fact, derivable from the smaller

set of axioms:

1fMil ⊢ (r ∗ s)t (FP1)
= (r(r ∗ s)+ s)t (B8)

= (r(r ∗ s))t + st (B7)
= r((r ∗ s)t)+ st (RSP)

= r ∗ (st)

50 Chapter 2. Star Expressions and Coalgebraic Completeness Theorems

The following theorem, due to Grabmayer and Fokkink [GF20], implies that

1fMil defines a sound axiomatization of bisimilarity in (StExp, ℓ).

Theorem 2.2.16 (Soundness). The relation ≡∗ ⊆ StExp× StExp is a bisimulation

equivalence in (StExp, ℓ).

Proof. We show that the relation ≡∗ satisfies the conditions of a bisimulation (Defini-

tion 2.2.5) by induction on the proof of the statement 1fMil ⊢ r = s. The base case is

mostly routine, and covers the equational axioms and reflexivity. We show the case

for the identity (B7) r1(r2r3) = (r1r2)r3, as it is slightly more involved.

Let r1,r2,r3 ∈ StExp. We need to show that r1(r2r3)
a−→✓ if and only if (r1r2)r3

a−→
✓, and that r1(r2r3)

a−→ s implies there is a transition (r1r2)r3
a−→ s′ with s↔ s′ and

(r1r2)r3
a−→ s′ implies there is a transition r1(r2r3)

a−→ s with s↔ s′.

Given any a ∈ Act, s ∈ StExp, r1(r2r3)
a−→ s implies either (i) r1

a−→✓ and s = r2r3,

or (ii) r1
a−→ r′ and s = r′(r1r2). In case (i), r1r2

a−→ r2 using the transition rule for

sequential composition. It follows that (r1r2)r3
a−→ r2r3. In case (ii), r1r2

a−→ r′r2, so

(r1r2)r3
a−→ (r′r2)r3. We have both r2r3 ≡∗ r2r3 and r1(r2r3)≡∗ (r1r2)r3 as desired.

Conversely, (r1r2)r3
a−→ s implies r1r2

a−→ s′ and s = s′r3 for some s′ ∈ StExp, because

¬(r1r2
a−→ ✓). Therefore, either (i) r1

a−→ ✓ and s′ = r2, or (ii) r1
a−→ r′ and s′ = r′r2.

In case (i), r1(r2r3)
a−→ r2r3. In case (ii), r1(r2r3)

a−→ r′(r2r3). We have both r2r3 ≡∗

r2r3,r1(r2r3)≡∗ (r1r2)r3 as desired.

The more involved inductive cases are (RSP) and the congruence rule for ∗.

• Suppose the last step in the proof is

s = r1s+ r2

s = r1 ∗ r2

(RSP)

and the pair (s,r1s+ r2) satisfies Definition 2.2.5. If s a−→✓, then r1s+ r2
a−→✓,

which must mean that r2
a−→✓ because ¬(r1s a−→✓). In such a case, r1 ∗ r2

a−→✓.

Conversely, if r1 ∗ r2
a−→ ✓, then r2

a−→ ✓ and therefore r1s+ r2
a−→ ✓. By the

induction hypothesis, s a−→✓. Hence, s a−→✓ iff r1 ∗ r2
a−→✓.

If s a−→ s′ ̸=✓, then there is an r′ such that r1s+ r2
a−→ r′ and s′ ≡∗ r′. If r2

a−→ r′,

then r1 ∗ r2
a−→ r′. Else, if r1s a−→ r′, then either r1

a−→ r′′ and r′ = r′′s, or r1
a−→✓

and r′ = s. In the former case, since s≡∗ r1 ∗ r2, r1 ∗ r2
a−→ r′′(r1 ∗ r2)≡∗ r′ because

2.2. One-free Star Expressions 51

r′ = r′′s. In the latter case, r1 ∗ r2
a−→ s = r′.

Conversely, if r1 ∗ r2
a−→ r′, then either r′ = r′′(r1 ∗ r2) where r1

a−→ r′′, or r2
a−→ r′. In

the former case, r1s+ r2
a−→ r′s. By the induction hypothesis, there is a transition

s a−→ s′ such that s′ ≡∗ r′s ≡∗ r′(r1 ∗ r2). In the latter case, by the induction

hypothesis applied to s≡∗ r1s+ r2, there is a transition s a−→ s′ such that s′ ≡∗ r′.

This concludes the (RSP) step.

• For the ∗ congruence rule, let r1 ≡∗ s1 and r2 ≡∗ s2 satisfy the conditions of

Definition 2.2.5. Then

r1 ∗ s1
a−→✓ ⇐⇒ s1

a−→✓

⇐⇒ s2
a−→✓ (ind. hyp.)

⇐⇒ r2 ∗ s2
a−→✓

Also, r1
a−→✓ if and only if r2

a−→✓ by the induction hypothesis, so r1 ∗s1
a−→ r1 ∗s1

if and only if r2 ∗ s2
a−→ r2 ∗ s2 as well. Finally, suppose r1

a−→ r′. Then r1 ∗ s1
a−→

r′(r1 ∗ s1), and r2
a−→ r′′ for some r′′ ≡∗ r′ by the induction hypothesis. It follows

that, r2 ∗ s2
a−→ r′′(r2 ∗ s2) ≡∗ r′(r1 ∗ s1). Conversely, if s1

a−→ r′, then r1 ∗ s1
a−→ r′.

By the induction hypothesis, there is a transition s2
a−→ r′′ ≡∗ r′ and therefore

r2 ∗ s2
a−→ r′′ ≡∗ r′. This concludes the ∗ congruence case.

The role that bisimulation equivalences play in coalgebra is analogous to the

role that congruences play in algebra. By Theorem 2.2.16 and Lemma 2.2.12, the set

StExp/≡∗ of star expressions modulo provable equivalence is itself an L-coalgebra,

and the quotient map [−]≡∗ : StExp→ StExp/≡∗ is a coalgebra homomorphism (see

Lemma 2.2.9 item 2).

2.2.3 Left-affine Systems and Solutions

Starting with an expression r ∈ StExp, obtaining a prechart (X ,δX) with a state x ∈ X

such that r↔ x is only a matter of computing ⟨r⟩. Going from a prechart (X ,δX) and

a state x ∈ X to an expression r ∈ StExp such that r↔ x is more difficult (and not

always possible). Next, we discuss how to see star expressions modulo bisimilarity as

solutions to certain systems of equations obtained from labelled transition systems.

52 Chapter 2. Star Expressions and Coalgebraic Completeness Theorems

Given a prechart (X ,δX), its left-affine system is the set of formal equations

x = ∑
x a−→✓

a+ ∑
x a−→x′

ax′ (2.8)

indexed by X , where we are thinking of each x ∈ X as an indeterminate. A solution to

the left-affine system associated with X is a map ϕ : X → StExp such that

ϕ(x)≡∗ ∑
x a−→✓

a+ ∑
x a−→x′

a ϕ(x′) (2.9)

for all x ∈ X . Composing a solution ϕ with the homomorphism [−]≡∗ : StExp→

StExp/≡∗, (2.9) becomes the equation

[ϕ(x)]≡∗ = ∑
x a−→✓

a+ ∑
x a−→x′

a [ϕ(x′)]≡∗ (2.10)

It follows from (2.10) that R = {(x, [ϕ(x)]≡∗) | x ∈ X} is a bisimulation between (X ,δ)

and StExp/≡∗. Since R is the graph of the map [−]≡∗ ◦ϕ , if ϕ : X→ StExp is a solution,

then [−]≡∗ ◦ϕ : X → StExp/≡∗ is a coalgebra homomorphism. Conversely, if [−]≡∗ ◦ϕ

is a homomorphism, then (2.10) holds. Since (2.9) and (2.10) are equivalent, we

have proven the following result.

Lemma 2.2.17. Let (X ,δ) be a prechart. A map ϕ : X → StExp is a solution to (X ,δ)

iff the map [−]≡∗ ◦ϕ : X → StExp/≡∗ is a homomorphism (X ,δ)→ (StExp/≡∗, [ℓ]≡∗).

The following theorem tells us that the quotient map [−]≡∗ is a solution to the

left-affine system of (StExp, ℓ).

Theorem 2.2.18 (Fundamental). Let r ∈ StExp. Then

r ≡∗ ∑
r a−→✓

a+ ∑
r a−→s

as

where ∑
n
i=1 ri = r1 +(∑n

i=2 ri) is a generalized sum that is well-defined up to the commu-

tativity and associativity of + assumed in Figure 2.1.

Remark 2.2.19. The above theorem is originally due to Brzozowski [Brz64]. It is

named the fundamental theorem of regular expressions by Silva [Sil10], in analogy

2.3. A Local Approach 53

with the fundamental theorem of formal power series [Rut03] (a version of the

fundamental theorem of calculus).

In the following pages, we often identify solutions with their corresponding

homomorphisms into (StExp/≡∗, [ℓ]≡∗). This is justified by Lemma 2.2.17.

2.3 A Local Approach

In the previous section, we observed that 1fMil is sound with respect to bisimilar-

ity, and that solutions from [GF20] coincide with coalgebra homomorphisms into

(StExp/≡∗, [ℓ]≡∗). In op. cit., Grabmayer and Fokkink show that 1fMil is complete

with respect to bisimilarity: that r ≡∗ s whenever r↔ s, for any r,s ∈ StExp. Next,

we give an abstract description of Grabmayer and Fokkink’s approach to proving

soundness and completeness, which we call the local approach, and compare it to an

approach found in classical automata theory. Grabmayer and Fokkink’s approach can

essentially be organized into four steps.

Step 1 is to show that ≡∗ is a bisimulation equivalence. This is the content of

Theorem 2.2.16 from Section 2.2, and establishes soundness.

Step 2 is to identify a class C of precharts such that for any r ∈ StExp, ⟨r⟩ ∈ C.

Step 3 is to show that for any (X ,δ) ∈ C, there is a unique L-coalgebra homo-

morphism (X ,δ)→ (StExp/≡∗, [ℓ]≡∗). By Lemma 2.2.17, homomorphisms into

(StExp/≡∗, [ℓ]≡∗) are identifiable with solutions, so this is the same as saying

that precharts in C admit unique solutions.

Step 4 is to show that C is closed under binary coproducts and bisimulation collapses.

That is, for any (X ,δX),(Y,δY) ∈ C, we also find (X ⊔Y,δX ⊔ δY) ∈ C as well

as the bisimulation collapse of (X ,δX), (X/↔, [δX]↔) ∈ C, obtained from the

quotient-by-bisimilarity map [−]↔ (see Lemma 2.2.9).

Thus, the four steps above are a coalgebraic rephrasing of their approach that requires

the introduction of coproducts. However, the coalgebraic analogue of Grabmayer

and Fokkink’s distinguished class of models is easily seen to be closed under binary

coproducts, as we will see in Section 2.4.

Remark 2.3.1. It should be noted that Grabmayer and Fokkink never explicitly

show in [GF20] that their class C, of what we call well-layered precharts (ignoring

54 Chapter 2. Star Expressions and Coalgebraic Completeness Theorems

start states), is closed under binary coproducts. However, it is readily seen from

the definition that a coproduct of layering witnesses is a layering witness for the

coproduct of their underlying precharts. Thus, the class of well-layered precharts is

closed under binary coproducts.

The four steps above are sufficient for showing soundness and completeness of

an axiomatization of bisimilarity in general. In fact, we can even replace Step 4 with

Step 4 is to show that C is collapsible, i.e.,for any (X ,δX),(Y,δY) ∈ C and any x ∈ X

and y ∈ Y such that x↔ y, there is a (V,δV) ∈ C and a pair of homomorphisms

p : (X ,δX)→ (V,δV) and q : (Y,δY)→ (V,δV) such that p(x) = q(y).

Steps 1-4 constitute what we call the local approach, leading to soundness and

completeness via the following theorem.

Theorem 2.3.2. Let B be a weak pullback preserving endofunctor and fix a B-coalgebra

(E,ε). Furthermore, let

• (Step 1) ≡ be a bisimulation equivalence on (E,ε) and

• (Step 2) C be a class of B-coalgebras containing ⟨e⟩ for each e ∈ E,

such that

• (Step 3) there is exactly one homomorphism (X ,δX)→ (E/≡, [ε]≡) for every

B-coalgebra (X ,δX) ∈ C, and

• (Step 4) C is collapsible.

Then e≡ f if and only if e↔ f for any e, f ∈ E.

Proof. Let e, f ∈ E. Since ≡ is a bisimulation equivalence, e≡ f implies e↔ f for any

e, f ∈ E by definition. Therefore, it suffices to show the converse.

Suppose e↔ f , and let (X ,δX) = ⟨e⟩ and (Y,δY) = ⟨ f ⟩. As C is collapsible, there

is a (V,δV) ∈C and a pair of homomorphisms p : (X ,δX)→ (V,δV),q : (Y,δY)→ (V,δV)

such that p(e) = q(f). Let ϕ : V → E/≡ be a homomorphism and consider

X V Y

E E/≡ E

p

ϕ

q

[−]≡ [−]≡

2.3. A Local Approach 55

Since (X ,δX) and (Y,δY) admit unique homomorphisms into (E/≡, [ε]≡), this diagram

commutes. In particular, [e]≡ = ϕ(p(e)) = ϕ(q(f)) = [f]≡, meaning e≡ f .

A class of B-coalgebras that is closed under binary coproducts and bisimulation

collapses is collapsible: If (X ,δX) and (Y,δY) are in the class, and x↔ y for some

x ∈ X and y ∈Y , let V = (X ⊔Y)/↔ and take p = [−]↔◦ inX and q = [−]↔◦ inY . Here,

inX : X ↪→ X ⊔Y is the inclusion of X into the coproduct X ⊔Y , and similarly for inY ,

and [−]↔ : X ⊔Y ↠V is the bisimulation collapse homomorphism. Because x↔ y in

(X ,δX)+(Y,δY), p(x) = q(y), from which collapsibility follows.

Steps 1 through 3 of the local approach might be familiar to readers acquainted

with completeness proofs in classical automata theory. Salomaa’s proof of complete-

ness for the whole axiom set in Figure 2.1 with respect to language equivalence for

regular expressions can be reorganized as follows: Kleene proved in [Kle56] that a

language is regular if and only if it is recognized by a state in a deterministic finite

automaton (or DFA). Thus, we can take DFAs as the distinguished class of coalgebras

in Step 2. This trivializes Step 4, as finiteness is preserved under binary coproducts

and bisimulation collapses. The central difficulty in Salomaa’s completeness proof is

in Step 3 [Sal66]. Kozen’s proof of completeness for Kleene algebra [Koz91] can be

reorganized similarly.

Although all four steps had been taken, neither of the completeness proofs

in [Sal66; Koz91] end by taking quotients or bisimulation collapses (like in Theo-

rem 2.3.2). Instead, bisimulations between DFAs are treated as DFAs, and solutions

are pulled back across projection homomorphisms. As Grabmayer and Fokkink point

out in [GF20], this use of bisimulations does not translate to the case of one-free

regular expressions. This is due to the fact that the distinguished class C, consisting

of the precharts for which they could prove the existence and uniqueness of solutions,

does not include every bisimulation between precharts in C. This is where the need

for collapsibility becomes apparent.

Comparing the difficulties in Salomaa’s approach with the difficulties in Grab-

mayer and Fokkink’s approach reveals a crucial aspect of discovering soundness and

completeness theorems in general. When choosing a distinguished class of models C,

there is a balance to be found between the difficulty of finding solutions to models in

C and proving their uniqueness on the one hand, and ensuring desirable structural

56 Chapter 2. Star Expressions and Coalgebraic Completeness Theorems

qualities of C on the other. Salomaa circumvented the difficulties of Steps 2 and 4

by including every finite automaton in his distinguished class, but this made Step 3 a

more difficult problem. Grabmayer and Fokkink were able to take Step 3 and prove

uniqueness of solutions for precharts in their distinguished class with relative ease,

but Step 4 took great ingenuity.

2.4 Layered Loop Existence and Elimination

Grabmayer and Fokkink prove that Milner’s axioms are complete with respect to

bisimilarity for the one-free fragment by modelling star expressions with charts. They

single out a specific class of charts, namely those satisfying their layered loop existence

and elimination property, or LLEE-property for short. Roughly, a prechart is said to

satisfy the LLEE-property if there is a labelling of its transitions by natural numbers

such that an edge descending into a loop accompanies a descent in natural number

labellings, and such that no successful termination can occur mid-loop. The existence

of such a labelling ensures that loops are never mutually nested, and requires threads

to finish every task in a loop before termination. Every chart interpretation of a star

expression has the LLEE-property, and every prechart with the LLEE-property admits

a unique solution.

In this section, we discuss a coalgebraic version of Grabmayer and Fokkink’s

distinguished class of models, the class of so-called LLEE-precharts, and review the

proof of its collapsibility. As it so happens, a slight variation of Grabmayer and

Fokkink’s proof of collapsibility shows something much stronger: That the class

of finite LLEE-precharts is closed under arbitrary homomorphic images. The main

tool used in the proof of collapsibility is the connect-through-to operation, which

preserves bisimilarity while it identifies bisimilar states. We generalize Grabmayer

and Fokkink’s connect-through-to operation, and show that it can be used to establish

closure under homomorphic images in general.

2.4.1 Well-layeredness

We give an equivalent but different characterization of LLEE-precharts that makes

them easier to describe coalgebraically, and rename the property to well-layeredness.

While we recall the necessary details, much of what is covered here can be found in

more detail in [GF20].

2.4. Layered Loop Existence and Elimination 57

A simple but interesting observation about well-layeredness is that it makes

no reference to the action labels of a prechart. In other words, well-layeredness is

really a property of transition systems with termination (transition systems for short),

coalgebras for the endofunctor Pω(✓+ Id). A well-layered transition system is a

transition system that admits a particular labelling, called an entry/body labelling,

that satisfies a few extra conditions.

Definition 2.4.1. For any set X , define the transformation

undX : Pω(✓+{e,b}×X)−→Pω(✓+X)

undX(U) = {✓ |✓ ∈U}∪{x | (e,x) ∈U}∪{x | (b,x) ∈U}
(2.11)

An entry/body labelling of a transition system (X ,τ) is a coalgebra (X ,τ•) for the

endofunctor Pω(✓+ {e,b} × Id) such that undX ◦ τ• = τ. We use the notation

und∗(X ,τ•) = (X ,undX ◦ τ•).

To state the extra conditions on the labellings that define well-layeredness, we

need some notation. Given an entry/body labelling (X ,τ•), the following glyphs are

used to denote its various transition types: For any x,y ∈ X ,

• x→✓ means ✓ ∈ τ•(x),

• x→e→e y means (e,y) ∈ τ•(x),

• x→b y means (b,y) ∈ τ•(x),

• x ↷ y means there exists v1, . . . ,vk such that x /∈ {v1, . . . ,vk,y} and

x→e→e v1→b · · · →b vk→b y

• x üy means there exists v1, . . . ,vk such that x /∈ {v1, . . . ,vk} and y ∈ {v1, . . . ,vk}

x→e→e v1→b · · · →b vk→b x

Transitions of the form x→e→e y and x→b y are called entry and body transitions,

respectively. We enclose a relation in (−)+ or (−)∗ to denote its transitive or transitive-

reflexive closure respectively.

Definition 2.4.2. A layering witness is an entry/body labelling (X ,τ•) that is

58 Chapter 2. Star Expressions and Coalgebraic Completeness Theorems

1. locally finite, meaning that ⟨x⟩ is finite for all x ∈ X ,

2. flat, meaning that x→e→e y implies ¬(x→b y) for all x,y ∈ X ,

3. fully specified, meaning that for all x,y ∈ X ,

(a) ¬(x→+
b x), and

(b) if x→e→e y for some y ̸= x, then y→+ x.

4. layered, meaning that the directed graph (X ,↷) is acyclic, and

5. goto-free, meaning that x ↷ y implies ¬(y→✓), for all x,y ∈ X .

A transition system (X ,δ) is said to be well-layered if (X ,δ) = und∗(X ,τ•) for a layering

witness (X ,τ•).

Example 2.4.3. The first three out of the following entry/body labellings are not

well-layered, but the fourth is.

✓ ✓ ✓ ✓

Here we use bold arrows to denote →e→e-transitions and ordinary arrows for →b-

transitions. The first and second violate the goto-free condition (5). The second

additionally violates layeredness (4), and the third is not fully-specified (3a).

We will also use und to denote the transformation

undX : LX →Pω(✓+X)

undX(U) = {✓ |✓ ∈U}∪
⋃

a∈Act

{x | (a,x) ∈U}
(2.12)

Again, we define und∗(X ,δX) = (X ,undX ◦ δX) and call it the underlying transition

system of (X ,δX). A layering witness for a prechart is a layering witness for its

underlying transition system, and a prechart is said to be well-layered if it has a

layering witness.

Remark 2.4.4. It can be checked that the underlying transition system of a locally

finite prechart (X ,δX) is well-layered if and only if (X ,δX) has an LLEE-witness [GF20].

To obtain an LLEE-witness from a layering witness, replace each x→e→e y with a

2.4. Layered Loop Existence and Elimination 59

weighted transition x [|x|en]−−−→ y, where4

|x|en = max{m ∈ N | (∃x1, . . . ,xm) x ↷ x1 ↷ · · ·↷ xm and x ̸= xi ̸= x j for i ̸= j}

and each x→b y with x [0]−→ y. This is a well-defined translation because we have

assumed that ⟨x⟩ is finite and (⟨x⟩,↷) is acyclic.

To obtain a layering witness from an LLEE-witness, replace each x a−→[n] y by x→e→e y

if n > 0 and y→+ x, or by x→b y otherwise. This entry/body labelling is flat because

every resulting entry transition appears in a minimal cycle, and every minimal cycle

contains precisely one entry transition by (W1) and (W2)(b) from [GF20]. Each

of the remaining conditions are by construction, or are a direct consequence of the

LLEE-witness conditions. For example, full specification follows from local finiteness

and (W1) in op. cit., and our assumption that x→e→e y implies y→+ x for all x,y.

By restricting a layering witness (X ,δ •) to a subcoalgebra (U,δU) of (X ,δX) =

und∗(X ,δ •), one obtains a layering witness (U,δ •U) for (U,δU). It follows from this

observation and the lemma below that ⟨r⟩ is well-layered for any r ∈ StExp.

Lemma 2.4.5. The prechart (StExp, ℓ) is well-layered.

Proof. To see that (StExp, ℓ) is locally finite, one can adapt Antimirov’s proof of

finiteness for LTSs generated by regular expressions [Ant96] to see that ⟨r⟩ is finite

for each r ∈ StExp. For the rest, we construct a layering witness (StExp, ℓ•) as follows:

Label a transition r a−→ s with r→e→e s if r→e→e s can be derived from the rules below.

r1→e→e s

r1r2→e→e sr2

r1
a−→✓

r1 ∗ r2→e→e r1 ∗ r2

r1
a−→ s r1→+ ✓

r1 ∗ r2→e→e s(r1 ∗ r2)

Label all other transitions as→b-transitions. It is easy to see this labelling is flat.

One can derive that (StExp, ℓ•) is fully specified, layered, and goto-free from

[GF20, Proposition 3.7] and the observation in Remark 2.4.4, that each layering

witness corresponds to an LLEE-witness and vice versa.

4Note here that either x = y, or the displayed equation includes y as a candidate x1, i.e., x ↷ y.
Indeed, if a prechart has an LLEE-witness, then it has an LLEE-witness that is flat, meaning that if
x [n]−→ y and x [m]−−→ y′ for n,m > 0, then n = m. Intuitively, the number |x|en measures the depth of the
deepest nested loop in a star expression representing x.

60 Chapter 2. Star Expressions and Coalgebraic Completeness Theorems

This completes Step 2 from Section 2.3: Where C is the set of finite well-layered

precharts, we find ⟨r⟩ ∈ C for any r ∈ StExp.

Example 2.4.6. Let s = ab+ba+ c and r = s∗a, where a,b,c ∈ A. The prechart ⟨r⟩ is

depicted below along with a layering witness.

rar br

✓

cb

a a

b

a
rar br

✓

Remark 2.4.7. It is important to note that not every well-layered prechart has a

unique layering witness. The prechart ⟨(aa)∗0⟩, for example, has exactly two.

2.4.2 A note about natural transformations in coalgebra

Before we continue with the next steps of the completeness proof, I would like to

briefly mention the involvement of the transformations named und from a theoretical

perspective. The key point is that und is an example of a natural transformation.

Given a natural transformation η : B1⇒ B2 between endofunctors B1,B2 on Set,

we obtain a functor η∗ : Coalg(B1)→ Coalg(B2), defined η∗(X ,δ) = (X ,ηX ◦δ), with

many nice properties [Rut00], including the following.

Lemma 2.4.8. Let η : B1⇒ B2 for endofunctors B1 and B2 on Set.

1. If U ⊆ X is a subcoalgebra of (X ,δX), then U is a subcoalgebra of η∗(X ,δX).

2. If R⊆ X×Y is a bisimulation between (X ,δX) and (Y,δY), then R is a bisimulation

between η∗(X ,δX) and η∗(Y,δY). In particular, for x ∈ X and y ∈ Y , if x↔B1 y,

then x↔B2 y.

3. If h : (X ,δX)→ (Y,δY) is a B1-coalgebra homomorphism, then h is also a B2-

coalgebra homomorphism η∗(X ,δX)→ η∗(Y,δY).

Concretely, every bisimulation (R,δR) between precharts (X ,δ) and (Y,δ) carries

an underlying bisimulation und∗(R,δR) between the transition systems und∗(X ,δX)

and und∗(Y,δY). However, not every bisimulation between und∗(X ,δX) and und∗(Y,δY)

lifts to a bisimulation between (X ,δ) and (Y,δ): Such relations ignore action labels

in general, while bisimulations between precharts do not.

2.4. Layered Loop Existence and Elimination 61

2.4.3 Existence and uniqueness of solutions

Steps 1 and 2 consisted of showing that ≡∗ is a bisimulation equivalence and ⟨r⟩ is a

well-layered prechart for each r ∈ StExp. To complete step 3 of the local approach,

Grabmayer and Fokkink give an explicit description of a solution to a chart (X ,δ) = ⟨x⟩

with layering witness (X ,δ •), called the canonical solution, and show that it is

equivalent to any other solution to (X ,δ). For any x ∈ X , let

ϕX(x)≡∗

 ∑
x a−→ex

a+ ∑
x a−→ey

x ̸=y

a tX(y,x)

∗
 ∑

x a−→✓

a+ ∑
x a−→by

a ϕX(y)

 (2.13)

where

tX(y,x)≡∗

 ∑
y a−→ey

a+ ∑
y a−→ez

z̸=y

a tX(z,y)

∗
 ∑

y a−→bx

a+ ∑
y a−→bz

x ̸=z

a tX(z,x)

The canonical solution ϕX(x) is defined recursively on the quantity

|x|bo = max{m | (∃x1, . . . ,xm) x→b x1→b · · · →b xm}

The expression tX(y,z) is defined when x ↷ y, recursively on the pair (|x|en, |y|bo) in

the lexicographical ordering on N×N, where |x|en is given in Remark 2.4.4.

It is shown in [GF20] that for any solution ϕ : X → StExp, ϕ(x) ≡∗ ϕX(x) for

all x ∈ X . This proves that well-layered charts have unique solutions. The same

result readily extends to the prechart case: If (X ,δ) is an arbitrary well-layered

prechart and x ∈ X , then ϕ⟨x⟩(x) is a well-defined expression, as ⟨x⟩ is a subcoalgebra

of (X ,δ) and is therefore also well-layered. By uniqueness of solutions for charts, the

map ϕX : X → StExp/≡ given by ϕX(x) = ϕ⟨x⟩(x) is a well-defined solution to (X ,δ).

Furthermore, since every solution to (X ,δ) restricts to a solution to ⟨x⟩ for each x ∈ X ,

ϕX is the unique solution to (X ,δ).

Lemma 2.4.9. If (X ,δ) is a well-layered prechart with layering witness (X ,δ •), then

ϕX : X → StExp/≡∗ is the unique solution to (X ,δ)

Proof. That ϕX is a solution is [GF20, Proposition 5.5]. That it is the unique solution

62 Chapter 2. Star Expressions and Coalgebraic Completeness Theorems

is [GF20, Proposition 5.8].

2.4.4 Reroutings and Closure under homomorphic images

The crucial step in Grabmayer and Fokkink’s proof is step 4 of the local approach,

showing that the bisimulation collapse of a finite well-layered chart is also well-

layered. This is done in a step-by-step procedure that exhaustively identifies bisimilar

states. In each step, a specially chosen pair (w1,w2) of distinct bisimilar states is

reduced to the singleton w2 by rerouting all of w1’s incoming transitions to w2 and

then deleting w1.

Given a set X and an element z ∈ X , write X \ z for the set {x ∈ X | x ̸= z} when

z ∈ X , X \U for the set {x ∈ X | x /∈U} for U ⊆ X .

Definition 2.4.10. Given a pair (x1,x2) of distinct states of a prechart (X ,δ), the

connect-x1-through-to-x2 construction returns the prechart (X \ x2,δ [x2/x1]), where

δ [x2/x1](x)(a) =

{(a,x2)}∪ (δ (x)\ (a,x1)) (a,x1) ∈ δ (x)

δ (x)(a) otherwise

The connect-x1-through-to-x2 operation preserves bisimilarity, in the sense that

if R is a bisimulation equivalence on (X ,δ), then R∩ (X ×X \ x1) is a bisimulation

between (X ,δ) and (X \ x1,δ [x2/x1]). This has the following consequence: If the only

pairs of distinct states in R are (x1,x2) and (x2,x1), then R1 = R∩ (X ×X \ x1) is the

graph of a homomorphism between (X ,δ) and (X \ x1,δ [x2/x1]), and consequently

(X \ x1,δ [x2/x1]) ∼= (X/R, [δ]R). Otherwise, R|X\x1 = R∩ (X \ x1)
2 is a bisimulation

equivalence containing a pair of distinct states (x3,x4). If (x3,x4) and (x4,x3) are the

only such pairs, then

R2 = R|X\x1 ∩ ((X \ x1)× (X \{x1,x3}))

is the graph of a homomorphism (X \ x1,δ [x2/x1])→ (X \{x1,x3},δ [x2/x1][x4/x3]), so

R1 ; R2 = R∩ (X×X \{x1,x3})

is the graph of a homomorphism (X ,δ)→ (X \{x1,x3},δ [x2/x1][x4/x3]) (where ; de-

notes relational composition) and (X \ {x1,x3},δ [x2/x1][x4/x3]) ∼= (X/R, [δ]R). Gen-

2.4. Layered Loop Existence and Elimination 63

x2 v v′ x1 x2 v v′

(X ,δ •) (X \ x1,δ [x2/x1])

Figure 2.5: A bisimulation rerouting that does not preserve well-layeredness.

erally, if X is finite, then iterating this construction yields the graph R1 ; · · · ; Rm

(for some m) of the homomorphism (X ,δ)→ (X/R, [δ]R) (up to ∼=). Taking R =↔,

the bisimulation collapse of a finite prechart X can be computed by iterating the

connect-through-to operation until no distinct pairs of bisimilar states are left.

For an arbitrary well-layered prechart (X ,δ) and a pair of distinct bisimilar

states (x1,x2), (X \ x1,δ [x2/x1]) may not be well-layered. An example discussed in

[GF20] is the connect-through-to construction depicted in Figure 2.5, which takes a

well-layered chart to a chart that does not admit a layering witness.

However, if (x1,x2) is chosen carefully, then the connect-x1-through-to-x2 oper-

ation preserves well-layeredness. Where (X ,δ •) is a layering witness for (X ,δ), it

is shown in [GF20] that (X \w1,δ [w2/w1]) is well-layered for any pair (w1,w2) of

distinct bisimilar states satisfying one of the following three conditions in (X ,δ •):

(C1) ¬(w2→∗ w1), and if (∃x) x ↷ w1, then ¬(∃y)(w2→∗ y⇒)

(C2) w2 ü+ w1

(C3) ¬(w2→∗b w1), and (∃x) w1 üx and w2 ü+ x and if w1 üy, then x üy

As Grabmayer and Fokkink point out [GF20], if (X ,δ •) is a layering witness for a

finite prechart (X ,δ) such that (X ,δ) ̸∼= (X/↔, [δ]↔), then there is a pair (w1,w2) of

distinct bisimilar states satisfying one of (C1)-(C3) in (X ,δ •). A slight variation on

their proof yields the following.

Lemma 2.4.11. Let (X ,δ •) be a layering witness for (X ,δ), and R be a bisimulation

equivalence on (X ,δ). If R is non-trivial, i.e.,(X ,δ) ̸∼= (X/R, [δ]R), then there is a pair

(w1,w2) ∈ R of distinct states satisfying one of (C1)-(C3).

Proof. This is essentially [GF20, Proposition 6.4], where this is proven for R =↔.

The proof of the above statement can be obtained by replacing↔ in their proof by

an arbitrary bisimulation equivalence.

64 Chapter 2. Star Expressions and Coalgebraic Completeness Theorems

By iterating the connect-through-to construction on the pairs guaranteed to exist

in Lemma 2.4.11, every homomorphic image of a finite well-layered prechart is seen

to be well-layered.

Theorem 2.4.12. Let (X ,δ) be a finite well-layered prechart, and R be a bisimulation

equivalence on (X ,δ). Then X/R is a well-layered prechart as well.

This completes step 4 of Grabmayer and Fokkink’s proof that Milner’s axioms are

complete with respect to bisimilarity for the one-free fragment of regular expressions.

Theorem 2.4.13 ([GF20]). For any r,s ∈ StExp, r↔ s if and only if r ≡∗ s.

Proof. Let C be the set of finite well-layered precharts. By Lemma 2.4.5, ⟨r⟩ ∈ C for

any r ∈ StExp. Lemma 2.4.9 tells us that precharts in C admit unique solutions.

By Theorem 2.3.2, it suffices to show that C is collapsible. A class of coalge-

bras closed under binary coproducts and homomorphic images is collapsible, so by

Theorem 2.4.12 it suffices to show that C is closed under binary coproducts. To this

end, observe that if (X ,δ •X) and (Y,δ •Y) are layering witnesses for (X ,δX) and (Y,δY)

respectively, then (X ,δ •X)+(Y,δ •Y) is a layering witness for (X ,δX)+(Y,δY).

2.4.5 A note about reroutings in general

Interestingly, the connect-through-to construction can be performed on general B-

coalgebras. For a fixed prechart (X ,δ) and a pair of states x1,x2 ∈ X , if i : X \ x1 ↪→ X

is the inclusion map and j : X ↠ X \ x1 is the map identifying x2 with x1, then the

prechart (X \ x1,δ [x2/x1]) obtained from the connect-x1-through-to-x2 construction is

given precisely by

δ [x2/x1](x) = (idAct× j)[δ (x)] = L(j)◦δ ◦ i(x)

In other words, the following diagram commutes.

X \ x1 X

L(X \ x1) LX

δ [x2/x1]

i

δ

L(j)

Notice that (i, j) is a splitting, meaning j ◦ i = idX\x1 .

2.4. Layered Loop Existence and Elimination 65

Definition 2.4.14. Given any B-coalgebra (X ,δ) and a splitting (i, j) with i : U ↪→ X ,

define (X ,δ)[i, j] = (U,B(j)◦δ ◦ i) and call (X ,δ)[i, j] the rerouting by (i, j) of (X ,δ).

As is the case for the connect-through-to operation, reroutings that identify

bisimilar states preserve bisimilarity.

Lemma 2.4.15. Let R be a bisimulation equivalence on a B-coalgebra (X ,δ), and (i, j)

be a splitting with i : U ↪→ X and ker(j) ⊆ R. Then Q = R∩ (X ×U) is a bisimulation

between (X ,δ) and (X ,δ)[i, j].

Proof. Let (R,δR) be the coalgebra structure on R, and define iQ : Q ↪→ R and jQ : R ↠

Q to be the maps iQ(x,y) = (x, i(y)) and jQ(x,z) = (x, j(z)). We need to check that jQ

is, indeed, a map into Q. This follows from the observation that j(z) = j ◦ i ◦ j(z),

and therefore since ker(j) ⊆ R, (z, i ◦ j(z)) ∈ R. Because R is transitive and both

(x,z),(z, i◦ j(z)) ∈ R, (x, i◦ j(z)) ∈ R as well. This means jQ(x,z) = (x, j(z)) ∈ Q.

Define the coalgebra structure (Q,δQ[iQ, jQ]), where

δQ[iQ, jQ] = B(jQ)◦δR ◦ iQ.

By definition, iQ and jQ satisfy πR
1 ◦ iQ = π

Q
1 , πR

2 ◦ iQ = i◦π
Q
2 , and πR

2 ◦ jQ = j ◦π
Q
2 . On

the one hand, π
Q
1 : Q→ X is a coalgebra homomorphism by definition. On the other,

δ [i, j]◦π
Q
2 = B(j)◦δX ◦ i◦π

Q
2 (def. of δ [i, j])

= B(j)◦δX ◦π
R
2 ◦ iQ (def. of iQ)

= B(j)◦B(πR
2)◦δR ◦ iQ (R is a bisim.)

= B(j ◦π
R
2)◦δR ◦ iQ (B is a functor)

= B(πQ
2 ◦ jQ)◦δR ◦ iQ (def. of jQ)

= B(πQ
2)◦B(jQ)◦δR ◦ iQ (B is a functor)

= B(πQ
2)◦δ [iQ, jQ]. (def. of δ [iQ, jQ])

Thus, Q is a bisimulation between (X ,δ) and (X ,δ)[i, j].

A rerouting (X ,δ)[i, j] is called an R-rerouting if R is a bisimulation and ker(j)⊆R.

In case R =↔, we will use the phrase bisimulation rerouting instead.

66 Chapter 2. Star Expressions and Coalgebraic Completeness Theorems

Assuming B weakly preserves pullbacks, the relational composition of two bisim-

ulations is again a bisimulation (Lemma 2.2.12). In general, if R is an equivalence on

X , and V ⊆ Y ⊆ X , then R∩ (X ×V) = (R∩ (X ×Y)) ; (R∩ (Y ×V)) and R∩ (Y ×Y) is

an equivalence relation. Thus, by iterating Lemma 2.4.15, we obtain the following

generalization of Theorem 2.4.12.

Theorem 2.4.16. Let B be an endofunctor that weakly preserves pullbacks, and C be a

class of finite B-coalgebras closed under isomorphism. Then

1. If for any (X ,δ) ∈ C and any nontrivial bisimulation equivalence R⊆ X×X there

is a nontrivial R-rerouting (U,δU) of (X ,δ) with (U,δU) ∈ C, then C is closed

under homomorphic images.

2. If for any (X ,δ) ∈ C such that X ̸∼= X/↔ there is a nontrivial bisimulation rerout-

ing (U,δU) of (X ,δ) such that (U,δU) ∈ C, then C is closed under bisimulation

collapses.

As closure under bisimulation collapses is often enough to establish collapsi-

bility, Theorem 2.4.16 tells us that establishing an abundance of reroutings in the

distinguished class can be a crucial step towards completeness.

2.5 A Global Approach

We now discuss a different approach to proving soundness and completeness the-

orems in process algebra, which we call the global approach, and show how the

soundness and completeness theorems of [GF20] fit in this setting. Fitting Grabmayer

and Fokkink’s proof into the mould of the global approach involves expanding the

class of finite well-layered precharts to a much larger class that is closed under

homomorphic images. We further show how the same remoulding technique can

turn many local approach proofs into global ones.

The global approach originates in coalgebraic automata theory [Jac06; Sil10;

SBR10; Mil10; BMS13]. Its main goal is to show that the expression language

modulo provable equivalence is isomorphic to a subcoalgebra of a final coalgebra.

For example, in [Jac06], Jacobs proves that the Kleene algebra axioms (see [Koz91;

Con71]) are sound and complete with respect to language equivalence by exhibiting a

coalgebra isomorphism between the initial Kleene algebra and the algebra of regular

languages. The coalgebras that appear in Jacobs’ paper are a standard choice for

2.5. A Global Approach 67

deterministic automata, the 2× (−)A-coalgebras. This establishes the soundness

and completeness of the Kleene Algebra axioms because bisimilarity and language

equivalence coincide. Silva successfully applies the same method in [Sil10] to a

variety of expression languages and axiomatizations parameterized by the functor B,

with Jacobs’ proof given by the special case B = 2× (−)A. Following the same pattern,

Milius gives an expression language and axiomatization of language equivalence for

stream circuits in [Mil10], and generalizes some results in [Sil10] to endofunctors

on categories other than Set. Following a similar approach, all three of the above are

unified in [BMS13].

In order to explain precisely how the global approach works, fix a B-coalgebra

(E,ε), thought of as an abstract expression language, and let ≡ be an equivalence

relation on E. Similar to the local approach, the global approach involves a sequence

of four steps:

Step 1 is showing that ≡ is a bisimulation equivalence. This establishes soundness.

Step 2 consists of identifying a class C of B-coalgebras in which (E/≡, [ε]≡) is weakly

final in C, i.e., that (E/≡, [ε]≡) ∈ C and every (X ,δ) ∈ C admits a homomor-

phism (X ,δ)→ (E/≡, [ε]≡). Again, homomorphisms into (E/≡, [ε]≡) play the

role of solutions, so it can be said that coalgebras in C admit solutions.

Step 3 is a proof that (E/≡, [ε]≡) is subfinal in C, i.e., every (X ,δ) ∈ C admits at

most one solution.

Step 4 consists of showing that C is closed under homomorphic images.

These four steps are sufficient for showing the soundness and completeness of the

axiomatizations in each of the cases considered in [Jac06; Sil10; SBR10; Mil10;

BMS13] because the functors that are present there satisfy two key properties. The

first key property is that there is a B-coalgebra (Z,ζ) that is final.

Definition 2.5.1. Let B be an endofunctor and C be a class of B-coalgebras. A

B-coalgebra (Z,ζ) is final in C if (Z,ζ) ∈ C and for any (X ,δ) ∈ C, there is a unique

homomorphism !δ : (X ,δ)→ (Z,ζ). We call (Z,ζ) final if it is final in Coalg(B).

Remark 2.5.2. Whether a final B-coalgebra exists usually depends on set-theoretic

properties of B [AR94]. For example, while there is no final LTS [Lam68], there is a

final prechart, due to the finite branching restriction implicit in (2.4).

68 Chapter 2. Star Expressions and Coalgebraic Completeness Theorems

Steps 1-4 above imply that (E/≡, [ε]≡) is a subcoalgebra of (Z,ζ).

Lemma 2.5.3. Let (E,ε) and (Z,ζ) be B-coalgebras with (Z,ζ) final. Then the be-

haviour map !ε : (E,ε)→ (Z,ζ) is injective if and only if there is a class C of B-coalgebras

that is closed under homomorphic images and such that (E,ε) is final in C.

Proof. For the forward direction, let C be the class of B-coalgebras (X ,δ) such that !δ

factors through !ε . Note that the factorization of !δ is necessarily unique because !ε is

injective. Clearly, (E,ε) is final in C. To see closure under images, let (X ,δX) ∈ C and

h : (X ,δX)→ (Y,δY) be a surjective homomorphism. Let !δX = !ε ◦k be the factorization

of !δX . Then there is a unique map f : (Y,δY)→ (E,ε) such that f (h(x)) = k(x), because

ker(h)⊆ ker(!δ) = ker(!ε ◦ k) = ker(k)

To see that f is a homomorphism, observe that

B(f)◦δY ◦h = B(f)◦B(h)◦δX = B(f ◦h)◦δX = B(k)◦δX = ε ◦ k = ε ◦ f ◦h

Since h is surjective, this implies that B(f)◦δY = ε ◦ f .

For the other direction, let J = !ζ [E] and use Lemma 2.2.9.2 to build ζJ = !ε(ε).

We know (J,ζJ) ∈ C from closure under homomorphic images. Since (E,ε) is final in

C, (J,ζJ) admits a unique coalgebra homomorphism h : (J,ζJ)→ (E,ε). Composing,

h ◦ !ε : (E,ε)→ (E,ε) is a homomorphism, so finality of (E,ε) in C tells us that

h◦ !ε = idE . As !ε has a left inverse, it is injective.

This means that if every (X ,δ) ∈ C admits a unique solution and C is closed

under homomorphic images, then [e]≡= !ε(e) for any e∈ E.5 The second key property

is preservation of weak pullbacks (Definition 2.2.11).

Lemma 2.5.4 (Rutten [Rut00]). Let (X ,δX) and (Y,δY) be B-coalgebras, x ∈ X , and

y ∈ Y . Assume that a final B-coalgebra exists. If B preserves weak pullbacks, then x↔ y

if and only if !δX (x) = !δY (y).

Following steps 1 through 4 above, and assuming that B has a final coalgebra

and preserves weak pullbacks, Lemma 2.5.3 and Lemma 2.5.4 tell us that [e]≡ =

!ε(e) = !ε(f) = [f]≡ if and only if e↔ f , for any e, f ∈ StExp.

5Here, we have identified (E/≡, [ε]≡) with its isomorphic copy in (Z,ζ).

2.5. A Global Approach 69

Theorem 2.5.5. Assume B preserves weak pullbacks and let ≡ be a bisimulation

equivalence on a B-coalgebra (E,ε). Let C be a class of B-coalgebras that is closed under

homomorphic images. If (E/≡, [ε]≡) is a final object in C, then e ≡ f if and only if

e↔ f for any e, f ∈ E.

Remark 2.5.6. Similar to Lemma 2.5.3, the converse of Theorem 2.5.5 is also true.

It follows from standard observations about the prechart functor L that there is

a final L-coalgebra [Rut00]6 and that L preserves weak pullbacks [Gum99]. This sug-

gests the possibility that the global approach can be taken to proving Theorem 2.2.16

and Theorem 2.4.13. This is indeed the case, although the class of finite well-layered

precharts needs to be extended to include (StExp/≡∗, [ℓ]≡∗). We show how to do this

in the next section.

2.5.1 A global approach to the one-free fragment

Returning to the one-free fragment of regular expressions, we have already seen

that the class of well-layered precharts has (StExp, ℓ) as a member. It is likely that

(StExp/≡∗, [ℓ]≡∗) is also well-layered, but this turns out to be unnecessary.

In order to have the global approach go through for the one-free fragment, we

make a slight change in the distinguished class of precharts from Section 2.4.

Definition 2.5.7. Let Cloc be the class of locally well-layered precharts, i.e., (X ,δ) ∈

Cloc if and only if (X ,δ) is locally finite and every x ∈ X is contained in a well-layered

subcoalgebra.

Every finite subcoalgebra of a locally well-layered prechart is well-layered. To see

why, observe that a finite subcoalgebra of a locally well-layered prechart is a union

of well-layered precharts. The union of a set of subcoalgebras is a homomorphic

image of their coproduct, and we already know that the set of well-layered precharts

is closed under disjoint unions and homomorphic images.

Using the fact that the finite well-layered precharts are closed under homomor-

phic images, we obtain the following key lemma.

Lemma 2.5.8. Let (X ,δX) be locally well-layered and q : (X ,δX)↠ (Y,δY) be a surjective

coalgebra homomorphism. Then (Y,δY) is locally well-layered as well.
6Namely, that it is bounded.

70 Chapter 2. Star Expressions and Coalgebraic Completeness Theorems

Proof. Since (X ,δX) is locally finite, and local finiteness is preserved under homo-

morphic images, (Y,δY) is locally finite as well. Let (U,δU) be a finite subcoalgebra

of (Y,δY). By Theorem 2.4.12, it suffices to show that (U,δU) is the homomorphic

image of a well-layered prechart.

To this end, let U = {y1, . . . ,yn} and let {x1, . . . ,xn} ⊆ X be such that q(xi) = yi

for i = 1, . . .n. If (V,δV) is the smallest subcoalgebra of (X ,δX) containing {x1, . . . ,xn},

then q restricts to a subcoalgebra homomorphism on V , and by definition (U,δU) is

the smallest subcoalgebra of (Y,δY) containing {y1, . . . ,yn}. Whence, the restriction

q|V : (V,δV)↠ (U,δU) is a surjective homomorphism.

Since ⟨xi⟩ is finite for each i, V is finite and therefore (V,δV) is well-layered.

Hence, (U,δU) is the homomorphic image of a well-layered finite prechart, and by

Theorem 2.4.12 is well-layered.

Every well-layered prechart is locally well-layered (a subcoalgebra of a well-

layered prechart is well-layered), so (StExp, ℓ) is locally well-layered by Lemma 2.4.5.

Since (StExp, ℓ) ∈ Cloc and (StExp/≡∗, [ℓ]≡∗) is the image of StExp under the

homomorphism [−]≡ : (StExp, ℓ) → (StExp/≡∗, [ℓ]≡∗), Lemma 2.5.8 tells us that

(StExp/≡∗, [ℓ]≡∗) ∈ Cloc as well.

So far, we have taken step 4 and the first half of step 2 from the global approach.

Interestingly, step 3 and the latter half of step 2 are possible because of Lemma 2.4.9,

the uniqueness-of-solutions theorem for finite precharts. To see how this works,

let (X ,δX) ∈ Cloc. By Lemma 2.4.9, every finite subcoalgebra U of (X ,δX) admits a

unique solution ϕU : (U,δU)→ (StExp/≡∗, [ℓ]≡∗). Since homomorphisms restrict to

subcoalgebras, this clearly implies that (X ,δX) admits at most one solution. To see

that (StExp/≡∗, [ℓ]≡∗) is final in Cloc, it suffices to construct a solution to (X ,δX).

The unique solution to (X ,δX) is the map ϕX : (X ,δX)→ (StExp/≡∗, [ℓ]≡∗) given

by ϕX(x) = ϕU(x) for any finite subcoalgebra U of (X ,δX) containing x. To see that

this is well-defined, recall that (X ,δX) is locally finite, meaning that every state

of X is contained in a finite subcoalgebra of (X ,δX). If (U,δU) and (V,δV) are

finite subcoalgebras of (X ,δX) with x ∈U and x ∈ V , then (U ∩V,δU∩V) is a finite

subcoalgebra of (X ,δX) containing x. By closure under subcoalgebras, (U ∩V,δU∩V)

is well-layered, so Lemma 2.4.9 tells us (U ∩V,δU∩V) admits a unique solution.

Restricting ϕU and ϕV to U ∩V also obtains a solution, so it must be that ϕU(x) =

2.5. A Global Approach 71

ϕU∩V (x) = ϕV (x). To see that ϕ is indeed a solution, observe that a map h : X → Y

between locally finite coalgebras is a coalgebra homomorphism if h|U : U → Y is a

coalgebra homomorphism for any finite subcoalgebra U of (X ,δX). Since the latter

statement is true of ϕ by definition, ϕ is a solution to (X ,δX). This establishes the

lemma below.

Lemma 2.5.9. Let Cloc be the class of locally well-layered precharts. Then

(StExp/≡∗, [ℓ]≡∗) is a final object in the class Cloc.

Together, Theorem 2.2.16 and Lemma 2.4.9, and Lemmas 2.5.8 and 2.5.9 consti-

tute steps 1 through 4 of the global approach to proving soundness and completeness

of Milner’s axioms for the one-free fragment of regular expressions modulo bisimula-

tion, thus providing an alternative proof of Theorem 2.4.13.

2.5.2 From local to global

As Lemma 2.5.9 illustrates, there are instances in which a completeness proof taking

the global approach can be obtained from the four steps in the local approach. This

is particularly the case when the distinguished class of coalgebras is closed under

binary coproducts, like the well-layered precharts.

Definition 2.5.10. Given a class C of B-coalgebras, call a B-coalgebra (X ,δ) locally

C if for any x ∈ X , there is a subcoalgebra (U,δU) ∈ C of (X ,δ) such that x ∈U . The

class of locally C coalgebras is denoted Cloc.

Where (E,ε) is a locally finite B-coalgebra and ≡ is a bisimulation equivalence

on (E,ε), assume that in the four steps of the local approach we have obtained a

class C of finite B-coalgebras such that

(a) (E,ε) is locally C,

(b) each (X ,δX) ∈ C admits a unique homomorphism into (E/≡, [ε]≡), and

(c) C is closed under subcoalgebras, binary coproducts, and homomorphic images.

We argue that Cloc satisfies the necessary conditions for steps 2 through 4 of the

global approach as follows.

To see uniqueness of solutions (X ,δX)→ (E/≡, [ε]≡) for (X ,δX), we go through

the same motions as in the prechart case. For any (X ,δX) ∈ Cloc, the unique solution

ϕX : X → E/≡ is defined locally: If x ∈ X and (U,δU) ∈ C is a finite subcoalgebra of

72 Chapter 2. Star Expressions and Coalgebraic Completeness Theorems

(X ,δX) containing x, then we define ϕX(x) = ϕU(x), where ϕU is the unique solution

to (U,δU). The map ϕX is a unique solution to (X ,δX) for the same reason as in

the prechart case: To see it is well-defined, suppose (U,δU),(V,δV) ∈ C are two

subcoalgebras containing x. Then there is a subcoalgebra W ⊆U ∩V containing x. By

closure under subcoalgebras, (W,δW) ∈ C, and ϕU(x) = ϕW (x) = ϕV (x) by restriction.

To see closure under homomorphic images, let h : (X ,δX)↠ (Y,δY) be a surjective

coalgebra homomorphism and (X ,δX) ∈ Cloc. We need to show that for any y ∈ Y ,

there is a finite subcoalgebra (U,δU) containing y that is in C. To this end, find

x ∈ h−1(y) and a finite subcoalgebra (V,δV) ∈ C containing x. Let (U,δU) be the

homomorphic image of (V,δV) under h. By closure under homomorphic images,

(U,δU) ∈ C. Hence, (Y,δY) ∈ Cloc.

Lastly, (E,ε) ∈ Cloc by assumption, so (E/≡, [ε]≡) ∈ Cloc by closure under ho-

momorphic images. The following theorem obtains a global approach proof of

completeness from the four steps of the local approach when C is closed under

subcoalgebras, binary coproducts, and homomorphic images.

Theorem 2.5.11. Let C be a class of finite B-coalgebras satisfying (a)-(c) above. Then

Cloc is closed under homomorphic images, and (E/≡, [ε]≡) is a final object of Cloc.

In other words, most coalgebraic completeness theorems proved using the local

approach can be proved using the global approach. On the other hand, not every

global approach-style completeness proof immediately gives rise to a local one. For

example, few of the distinguished classes of coalgebras found in the global approach-

style proofs in [Sil10] include the DFA interpretation of every expression in the

language (these DFAs often fail to be locally finite).

2.6 Discussion

In this chapter, we saw a coalgebraic take on Grabmayer and Fokkink’s completeness

proof for Milner’s axiomatization of bisimilarity of one-free star expressions [GF20].

We generalized their method to a completeness proof strategy called the local ap-

proach. In addition, we generalized a different completeness proof method, one that

originates in [Jac06; Sil10; BMS13]. We called this generalized method the global

approach. We saw that under mild conditions, a completeness proof taking the local

approach can be remoulded to fit the global approach, and applied this remoulding

2.6. Discussion 73

technique to Grabmayer and Fokkink’s proof.

The crucial result that makes the global approach work is Lemma 2.5.3, which

states that the behaviour map from a coalgebra (E,ε) is injective if and only if (E,ε)

is final in some class of coalgebras closed under homomorphic images. At first glance,

Lemma 2.5.3 is a rather elementary observation. Its proof is straightforward, and

one always has on hand a candidate for the distinguished class (although it may not

satisfy the unique solutions property): The set of quotients of (E/≡, [δ]≡) itself is

closed under homomorphic images. The significance of the lemma is not the depth

of the result or in the difficulty of its proof. Instead, its significance is its direct and

formal connection between properties that guarantee solvability of systems (i.e., the

defining property of a class) and coalgebraic completeness theorems. It tells us that

every coalgebraic completeness theorem can, in principle, be proven using the global

approach.

Unfortunately, Lemma 2.5.3 does not provide a method of producing a com-

pleteness proof (that takes the global approach), even from an already established

completeness theorem: It does not construct a distinguished class of coalgebras where

solvability is easy to establish. In the next chapter, we prove several coalgebraic com-

pleteness theorems without using the local or global approaches introduced in this

chapter. We use the global approach again in the last technical chapter (Chapter 4) to

prove a general completeness theorem, for a family of process calculi (called effectful

process calculi) where the distinguished class consists of the locally finite coalgebras.

Chapter 3

Guarded Kleene Algebra with Tests

In the previous chapter, we analyzed a completeness proof in the process algebra

literature and drew from our analysis a general characterization of coalgebraic

completeness theorems. In this chapter, we turn our attention to guarded Kleene

algebra with tests (GKAT) and its bisimulation variant (bisimulation GKAT), two

closely related algebraic structures for reasoning with imperative programs built from

if-then-else and while loop constructs. We will also look at the skip-free fragment of

(bisimulation) GKAT, which closely resembles the one-free regular expressions of the

previous chapter. We are going to prove four completeness theorems: one for each of

GKAT, bisimulation GKAT, skip-free GKAT, and skip-free bisimulation GKAT.

GKAT originates in Kleene algebra with tests (KAT), introduced by Kozen [KS96]

for reasoning about semantics and equivalence of simple imperative programs. KAT

extends Kleene Algebra [Kle56] with Boolean control flow to enable the encoding of

conditionals and while loops. KAT has been applied to a number of verification tasks,

including proof-carrying Java programs [KK05], compiler optimization [KP00], and

file systems [Cha+19].

More recently, KAT was used for reasoning about packet-switched networks,

serving as a core to NetKAT [And+14; Fos+15] and Probabilistic NetKAT [Fos+16;

Smo+17]. The success of KAT in networking is partly due to its ability to both

specify and verify network properties. Moreover, the implementations of NetKAT and

ProbNetKAT were competitive with state-of-the-art tools [Fos+15; Smo+19]. This

came as a surprise, because the decision problem for equivalence in both KAT and

NetKAT is PSPACE-complete [KS96; Fos+15].

Further investigation [Smo+20] revealed that most NetKAT programs are deter-

76 Chapter 3. Guarded Kleene Algebra with Tests

ministic, and therefore make use of a proper fragment of KAT. It turns out that the

difficulty of deciding equivalence in KAT can largely be attributed to nondeterminism

in KAT programs. If one restricts to KAT programs that operate deterministically

with respect to Boolean control flow, then the associated decision problem is nearly

linear1. The deterministic fragment of KAT, in which programs are built up from

if-then-else and while loop constructs, had already been introduced by Kozen and

Tseng much earlier [KT08]. GKAT was introduced in [Smo+20] specifically for

reasoning about deterministic KAT programs [Smo+20].

Open problems

Equivalence of GKAT programs was given a complete axiomatization in [Smo+20].

However, the axiomatization in op. cit. suffers from two serious drawbacks: First, it

includes a powerful uniqueness of solutions axiom2 (UA). Technically, UA is an axiom

scheme that stands for infinitely many axioms, and greatly encumbers algebraic rea-

soning in practice. In order to use UA to show that two programs are equivalent, one

needs to find a system of equations that they both satisfy. Second, the axiomatization

contains an inference rule with a side condition reminiscent of Salomaa’s empty word

property for regular expressions [Sal66] (also see Figure 2.1). Kozen showed that

Salomaa’s empty word property is non-algebraic (it is not preserved under arbitrary

substitution of atomic programs) [Koz91], which also impairs the use of axiomatic

reasoning in context. The authors of [Smo+20] ask two questions in response to

these drawbacks:

Question 1. Can UA be derived from the other GKAT axioms?

Question 2. Is there an algebraic axiomatization of GKAT?

Despite the attention GKAT has received recently [Sch+21; ZSS22; Sch+22; KSS23],

both questions remain open.

Contributions of this chapter

The first contribution of this chapter is a new perspective on the semantics of GKAT

programs and their corresponding automata. We show that the bisimilarity class of a

1In O(n α(n)), where α is the inverse Ackermann function [Tar75].
2The uniqueness axiom can also be seen as an instance of the Recursive Specification Principle

from [BBK87].

77

GKAT program—a.k.a. its behaviour—is faithfully represented by a kind of tree. We

also show that omitting a single axiom from the axiomatization of language equiva-

lence for GKAT programs (presented in [Smo+20]) gives a complete axiomatization

of bisimilarity of GKAT programs.

The second contribution is a partial answer to both Question 1 and Question 2

above. We show that axiomatically verifying an equivalence in GKAT does not require

UA if the two programs in question are of a particular form: what we call skip-free.

The fragment of GKAT consisting of skip-free programs is expressive enough to

capture a large class of programs, and it also provides a better basis for algebraic

reasoning than GKAT. In particular, we show that the non-algebraic side condition

can be removed. Our inspiration to look at this fragment came from a completeness

theorem of Grabmayer and Fokkink [GF20], whose proof we analyzed in Chapter 2.

In a nutshell, the contributions of this chapter are two-fold: One is to give a

coalgebraic account of GKAT and its open completeness problems, and the other is to

identify a large fragment of GKAT—the skip-free fragment—that admits an algebraic

axiomatization. The chapter is organized as follows:

• We introduce GKAT in Section 3.1, starting with an example of the kind of

algebraic reasoning it allows. We give an operational model of bisimulation

GKAT, an axiomatization of bisimilarity for GKAT programs, and show that the

bisimulation semantics of a GKAT program can be represented as a certain kind

of tree. We state completeness theorems for both GKAT and bisimulation GKAT

with the added axiom UA mentioned above. We do not prove the completeness

of bisimulation GKAT with UA, as it is a special case of Theorem 4.5.12. We

do prove the completeness of GKAT with UA: The proof is a reduction to the

completeness of bisimulation GKAT using a so-called pruning technique.

• In Section 3.2, we introduce skip-free GKAT, the fragment of GKAT without

nontrivial Boolean expressions, which we focus on for the remainder of the

chapter. We introduce the operational models of skip-free GKAT programs,

their language semantics, and their bisimulation semantics.

• We prove a completeness theorem for skip-free bisimulation GKAT in Sec-

tion 3.3, an algebraic axiomatization of bisimilarity for skip-free GKAT pro-

grams. The completeness proof is a reduction to the completeness theorem of

78 Chapter 3. Guarded Kleene Algebra with Tests

Grabmayer and Fokkink [GF20] from Chapter 2.

• In Section 3.4, we prove that the algebraic axiomatization of skip-free GKAT is

sound and complete with respect to the language semantics of GKAT using the

completeness result for skip-free bisimulation GKAT and a pruning technique

analogous to the one in Section 3.1. This provides a partial answer to both

Questions 1 and 2.

• Much of the development of skip-free GKAT in this chapter is done without

clarifying the connection to the original treatment of GKAT. The purpose of

Section 3.5 is to make the connection explicit: We show that equivalence proofs

of skip-free GKAT expressions (for both language and bisimulation semantics)

embed into full GKAT. That is, (1) every skip-free (bisimulation) GKAT proof

can be turned into a (bisimulation) GKAT proof with the same conclusion,

and (2) every (bisimulation) GKAT proof that two skip-free expressions are

equivalent can be turned into a skip-free (bisimulation) GKAT proof with the

same conclusion.

Related work is discussed in Section 3.6.

This chapter is based on two papers.

Section 3.1 is based on Guarded Kleene Algebra with Tests: Coalgebras,

Coequations, and Completeness, written by myself, Tobias Kappé, Dexter

Kozen, and Alexandra Silva, and presented by myself at ICALP 2021

online [Sch+21].

The rest is based on A Complete Inference System for Skip-free Guarded

Kleene Algebra with Tests, written by Tobias Kappé, myself, and Alexandra

Silva, and presented by myself at ESOP 2023 in Paris, France [KSS23].

3.1 Guarded Kleene Algebra with Tests

GKAT can be used to efficiently decide equivalences between propositional while

programs, bits of code where control flow is fully specified and state changes in

memory (like variable assignments) have been left uninterpreted. Reasoning about

program equivalence in GKAT allows for an algebraic workflow consisting of certain

code transformations. We start with an example of the kind of code transformations

and algebraic reasoning possible in GKAT.

3.1. Guarded Kleene Algebra with Tests 79

Fizz! Buzz!

In the game Fizz! Buzz! [Ree02], players sit in a circle taking turns counting up from

one. Instead of saying any number that is a multiple of 3, players must say “fizz”, and

instead of a multiple of 5 players must say “buzz”. If the number is a multiple of both

3 and 5, the player must say “fizz buzz”.

def fizzbuzz1 = (i)
n := 1;
while n≤ 100 do

if 3|n then
if not 5|n then

print fizz ; n++;
else

print fizzbuzz ; n++;
else if 5|n then

print buzz ; n++;
else

print n; n++;
print done!;

def fizzbuzz2 = (ii)
n := 1;
while n≤ 100 do

if 5|n and 3|n then
print fizzbuzz ;

else if 3|n then
print fizz ;

else if 5|n then
print buzz ;

else
print n;

n++;
print done!;

Figure 3.1: Two possible specifications of the ideal Fizz! Buzz! player.

Imagine you are asked in a job interview to write a program that prints out the

first 100 rounds of a perfect game of Fizz! Buzz!. You write the function fizzbuzz1 as

given in Figure 3.1(i). Thinking about the interview later that day, you look up a

solution, and you find fizzbuzz2, depicted in Figure 3.1(ii). You suspect that fizzbuzz2

should do the same thing as fizzbuzz1, and after thinking it over for a few minutes,

you realize your program could be transformed into the reference solution by a series

of transformations that do not change its semantics:

1. Place the common action n++ at the end of the loop.

2. Replace not 5|n with 5|n and swap print fizz with print fizzbuzz .

3. Merge the nested branches of 3|n and 5|n into one.

Feeling somewhat more reassured, you ponder the three steps above. It seems

like their validity is independent of the actual tests and actions performed by the

code. For example, swapping the branches of an if-then-else block while negating

the test should be valid under any circumstances. This raises a number of questions:

Is there a family of primitive transformations that can be used to derive valid ways

80 Chapter 3. Guarded Kleene Algebra with Tests

of rearranging imperative programs? Furthermore, is there an algorithm to decide

whether two programs are equivalent under these laws?

Guarded Kleene Algebra with Tests (GKAT) [Smo+20] has been proposed as a

way of answering the questions above. Expressions in the language of GKAT model

skeletons of imperative programs, where the exact meaning of tests and actions is

abstracted. The syntax of GKAT appears in Section 3.1.1. GKAT programs can be

interpreted essentially in two ways, as we will see in Section 3.1.2 and Section 3.1.3,

and the interpretation you choose has a subtle influence on which programs are

equivalent3. In Section 3.1.4, we see the laws of GKAT, which correspond to program

transformations that are valid regardless of the semantics of tests and actions.

3.1.1 The Syntax

Formally, GKAT expressions are captured by a two-level grammar, generated by a

finite set of tests T and a finite set of actions Σ, as follows:

BExp ∋ b,c ::= 0 | 1 | t ∈ T | b∨ c | b∧ c | b

GExp ∋ e, f ::= b ∈ BExp | p ∈ Σ | e+b f | e f | e(b)
(3.1)

BExp is the set of Boolean expressions, built from 0 (false), 1 (true), and primitive

tests from T , and composed using ∨ (or), ∧ (and), and (not). GExp is the set of

GKAT expressions, built from tests (assert statements) and primitive actions p ∈ Σ.

Here, e+b f is a condensed way of writing “if b then e else f”, and e(b) is shorthand

for “while b do e”. The operator · models sequential composition.

Example 3.1.1. Abbreviating statements of the form print foo by simply writing foo,

Figure 3.1(i) can be rendered as the GKAT expression

(n := 1) ·

 (fizz ·n+++5|n fizzbuzz ·n++)+3|n

(buzz ·n+++5|n n ·n++)

(n≤ 100)

·done! (3.2)

Similarly, the program in Figure 3.1(ii) gives the GKAT expression

(n := 1) · ((fizzbuzz +5|n∧3|n (fizz +3|n (buzz +5|n n))) ·n++)(n≤ 100) ·done! (3.3)

3You can rest assured that fizzbuzz1 and fizzbuzz2 are equivalent under both interpretations.

3.1. Guarded Kleene Algebra with Tests 81

Remark 3.1.2. To avoid excessive use of parentheses in GKAT expressions, we use the

order of operations (b) > ·>+b. We often omit · entirely. We also let each operation

associate to the right. For example, e1e2e3 +b e4
(b)e5 = (e1 · (e2 · e3))+b (e4

(b) · e5).

3.1.2 Relational/Language Semantics of GKAT

A moment ago, we stated that GKAT equivalences are intended to witness program

equivalence, regardless of how primitive tests and actions are interpreted. We make

this more precise by recalling the relational semantics of GKAT programs [Smo+20].4

The intuition behind this semantics is that if the possible states of the machine being

programmed are modelled by some set S, then tests are predicates on S (comprised

of all states where the test succeeds), and actions are relations on S (encoding the

changes in state affected by the action).

Definition 3.1.3. A (relational) interpretation is a triple σ = (S,eval,sat) where S is a

set, eval : Σ→P(S×S) and sat : T →P(S). Each relational interpretation σ gives rise

to a semantics ⌊⌈−⌋⌉
σ

: GExp→P(S×S), as follows:

⌊⌈0⌋⌉
σ
= /0

⌊⌈
b̄
⌋⌉

σ
= ⌊⌈1⌋⌉

σ
\⌊⌈b⌋⌉

σ

⌊⌈1⌋⌉
σ
= {(s,s) | s ∈ S} ⌊⌈p⌋⌉

σ
= eval(p)

⌊⌈t⌋⌉
σ
= {(s,s) | s ∈ sat(t)} ⌊⌈e+b f ⌋⌉

σ
= ⌊⌈b⌋⌉

σ
◦⌊⌈e⌋⌉

σ
∪
⌊⌈

b̄
⌋⌉

σ
◦⌊⌈ f ⌋⌉

σ

⌊⌈b∧ c⌋⌉
σ
= ⌊⌈b⌋⌉

σ
∩⌊⌈c⌋⌉

σ
⌊⌈e f ⌋⌉

σ
= ⌊⌈e⌋⌉

σ
◦⌊⌈ f ⌋⌉

σ

⌊⌈b∨ c⌋⌉
σ
= ⌊⌈b⌋⌉

σ
∪⌊⌈c⌋⌉

σ

⌊⌈
e(b)
⌋⌉

σ

= (⌊⌈b⌋⌉
σ
◦⌊⌈e⌋⌉

σ
)∗ ◦
⌊⌈

b̄
⌋⌉

σ

Here we use ◦ for relation composition and ∗ for reflexive transitive closure.

Remark 3.1.4. If eval(p) is a partial function for every p ∈ Σ, then so is ⌊⌈e⌋⌉
σ

for each

e. The above therefore also yields a semantics in terms of partial functions. Here,

partiality is an inevitability when there is some test b such that sat(b) ̸= ∆S, as ⌊⌈bp⌋⌉
σ

is the (domain) restriction of eval(p) to sat(b).

The relation ⌊⌈e⌋⌉
σ

contains the possible pairs of start and end states of the

program e. For instance, the input-output relation of ⌊⌈e+b f ⌋⌉ consists of the pairs in

⌊⌈e⌋⌉
σ

(resp. ⌊⌈ f ⌋⌉
σ

) where the start state satisfies b (resp. violates b).

4A probabilistic semantics in terms of sub-Markov kernels is also possible [Smo+20].

82 Chapter 3. Guarded Kleene Algebra with Tests

Example 3.1.5. We can model the states of the machine running Fizz! Buzz! as pairs

(m, ℓ), where m is the current value of the counter n, and ℓ is a list of words printed

so far. The accompanying maps sat and eval are given by:

sat(k|n) = {(m, ℓ) ∈ S | m≡ 0 mod k}

sat(n≤ k) = {(m, ℓ) ∈ S | m≤ k}

eval(n++) = {((m, ℓ),(m+1, ℓ)) | (m, ℓ) ∈ S}

eval(n := k) = {((m, ℓ),(k, ℓ)) | (m, ℓ) ∈ S}

eval(w) = {((m, ℓ),(m, ℓw)) | (m, ℓ) ∈ S} (w ∈ {fizz ,buzz ,fizzbuzz})

eval(n) = {((m, ℓ),(m, ℓm)) | (m, ℓ) ∈ S}

For instance, the interpretation of n++ connects states of the form (m, ℓ) to states

of the form (m+ 1, ℓ)—incrementing the counter by one, and leaving the output

unchanged. Similarly, print statements append the given string to the output.

On the one hand, this parameterized semantics shows that programs in the

GKAT syntax can be given a semantics that corresponds to the intended meaning of

their actions and tests. On the other hand, it allows us to quantify over all possible

interpretations, and thus abstract from the meaning of the primitives.

As it happens, two expressions have the same relational semantics under any

interpretation if and only if they have the same language semantics [Smo+20], i.e.,

they denote the same languages of guarded strings.

Guarded Language Semantics

For a fixed set of primitive tests T = {t1, . . . , tn}, let At be the set of atomic tests formed

from T , given by At = {t ′1 ∧ ·· · ∧ t ′n | t ′i ∈ {ti, t̄i}}. We usually use α,α ′,β to refer to

atomic tests, often with subscripts. A guarded string is a word of alternating atomic

tests and primitive actions that ends in an atomic test. Formally, the set of guarded

strings is GS = (At ·Σ)∗ ·At (here, · denotes string concatenation). Intuitively, in a

guarded string α1 p1α2 p2 · · · pnαn+1, αi captures the state of the program variables

needed to execute the program action pi, and the execution of each pi except the last

yields a new program state αi+1. A guarded language is a set of guarded strings.

3.1. Guarded Kleene Algebra with Tests 83

Definition 3.1.6. The language semantics L : GExp→P(GS) of GKAT is defined

L(b) = b L(p) = {α pα
′ | α,α ′ ∈ At} L(e+b f) = b⋄L(e)∪ b̄⋄L(f)

L(e f) = L(e)⋄L(f) L(e(b)) =
⋃

n∈N
(b⋄L(e))⋄n ⋄ b̄

where L1 ⋄L2 = {uαw | uα ∈ L1 and αw ∈ L2}, L⋄0 = At, and L⋄n+1 = L⋄Ln. If L(e) =

L(f), we say e and f are language equivalent.

Remark 3.1.7. Above, we identify b ∈ BExp with the set {α ∈ At | α ≤BA b} of atomic

tests provably below b in the Boolean algebra order (see Figure 3.3). Note that we

could also have used the notation α ∈ b to denote that α ≤BA b for α ∈ At, without

ambiguity. This is justified by the finite version of Stone duality, that the Boolean

algebra generated by T (a finite set of tests) is isomorphic to the Boolean algebra

of sets 2At. In fact, replacing BExp with 2At in the definition produces an algebra of

programs that is equivalent to GKAT, but instead of having one if-then-else operation

and one while loop operator for every Boolean expression, it has only 2At of each—i.e.,

it has finitely many algebraic operations in total. To better fit the canonical literature,

I have stuck to the original notation. See also Example 4.5.1.

It is shown in [Smo+20] that language equivalence for GKAT expressions is

decidable in nearly linear time, and therefore so is equivalence under all relational

interpretations. The decision procedure for language equivalence in [Smo+20] uses

bisimulation and known results from automata theory, which are particularly good

for mechanization. This is part of the motivation for the bisimulation semantics of

GKAT, which interprets GKAT expressions as bisimilarity classes of states in a certain

kind of automaton.

3.1.3 Bisimulation Semantics of GKAT

We can think of a GKAT program as a machine that evolves as it reads a string of

atomic tests. Depending on the most recently observed atomic test, the program

either accepts, rejects, or emits an action label and changes to a new state. For

example, feeding “if b do p else q” an atomic test α ≤ b causes it to perform the action

p and then terminate successfully.

84 Chapter 3. Guarded Kleene Algebra with Tests

α ≤ b

b⇒ α p α|p−−→ 1

α ≤ b e⇒ α

e+b f ⇒ α

α ≤ b̄ f ⇒ α

e+b f ⇒ α

α ≤ b e α|p−−→ e′

e+b f α|p−−→ e′
α ≤ b̄ f α|p−−→ f ′

e+b f α|p−−→ f ′

e⇒ α f ⇒ α

e f ⇒ α

e⇒ α f α|p−−→ f ′

e f α|p−−→ f ′
e α|p−−→ e′

e f α|p−−→ e′ f

α ≤ b e α|p−−→ e′

e(b) α|p−−→ e′e(b)
α ≤ b̄

e(b)⇒ α

Figure 3.2: The transition structure of (GExp,δ). Here, e,e′, f , f ′ ∈ GExp, b ∈ BExp, α ∈ At,
and p ∈ Σ. For a given α ∈ At, if neither e⇒ α nor e α|p−−→ e′ can be derived for
any p ∈ Σ and e′ ∈GExp, then e ↓ α . That is, transitions not explicitly defined are
assumed to be failed termination.

Definition 3.1.8. A GKAT automaton [KT08; Smo+20] is a G-coalgebra5 (X ,δX),

where for any set X and any function h : X → Y ,

GX = (2+Σ×X)At G(h)(θ)(α) =

θ(α) θ(α) ∈ 2

(p,h(x)) θ(α) = (p,x) ∈ Σ×X

for θ ∈ GX and α ∈ At. Above, At is the set of atomic tests (Definition 3.1.6),

2 = {⊥,⊤}, and Σ is the set of primitive actions. We use x α|p−−→δX
x′ to denote

δ (x)(α) = (p,x′), x⇒δX α to denote δ (x)(α) =⊤ (x accepts α), and x ↓δX α to denote

δ (x)(α) = ⊥ (x rejects α). We also adopt the convention of writing x b|p−−→δX
x′ for

b ∈ BExp to represent the multitude of transitions of the form x α|p−−→ x′ where α ≤ b.

We drop the subscript δ when the automaton is clear from context.

Intuitively, X represents the states of an abstract machine running a GKAT

program with dynamics encoded in δ . When the machine is in state x and observes

α ∈ At, there are three possibilities: If x ↓ α , the machine rejects. If x⇒ α , it accepts.

If x α|p−−→ x′, it performs the action p and transitions to the state x′.

We can equip GExp with a GKAT automaton structure that closely resembles the

language interpretation of GKAT programs. It is called the syntactic GKAT automaton

and written (GExp,δ), where δ is the transition map given by Brzozowski derivatives

as specified in Figure 3.2.

The language semantics of GKAT programs coincides with the intuitive notion

5See Definition 2.2.6 for coalgebraic definitions.

3.1. Guarded Kleene Algebra with Tests 85

of language acceptance in the syntactic GKAT automaton.

Definition 3.1.9. Let (X ,δX) be a GKAT automaton and let x ∈ X . We write

L(x,(X ,δX)) for the guarded language accepted by x, defined

L(x,(X ,δX)) =
{

α1 p1 · · ·αn pnαn+1

∣∣∣ x α1|p1−−−→ x1 −→ ·· · αn|pn−−−→ xn⇒ αn+1

}
Two states are called language equivalent if they accept the same guarded language.

When the transition structure is clear, we typically write L(x) instead of L(x,(X ,δX)).

Lemma 3.1.10. For any e ∈ GExp, L(e) = L(e,(GExp,δ)).

Proof. By induction on e. In the base case, we have L(b) = {α | α ≤ b} =

L(b,(GExp,δ)) for b ∈ BExp and L(p) = {α1 pα2 | α1,α2 ∈ At} = L(p,(GExp,δ)) for

p ∈ Σ. For the inductive step, we have the following three cases.

• In the guarded union case, we have

L(e+b f) = b⋄L(e)∪ b̄⋄L(f) = b⋄L(e,(GExp,δ))∪ b̄⋄L(f ,(GExp,δ))

by the induction hypothesis. Now, given w ∈ GS, α pw ∈ L(e+b f ,(GExp,δ))

if and only if either α ≤ b and α pw ∈ L(e,(GExp,δ)) or α ≤ b̄ and α pw ∈

L(f ,(GExp,δ)). That is,

b⋄L(e,(GExp,δ))∪ b̄⋄L(f ,(GExp,δ)) = L(e+b f ,(GExp,δ))

• In the sequential composition case,

L(e f) = L(e)⋄L(f) = L(e,(GExp,δ))⋄L(f ,(GExp,δ))

by the induction hypothesis. Let α1 p1 · · ·αn pnαn+1 ∈ L(e,(GExp,δ)) ⋄

L(f ,(GExp,δ)), and find an i ≤ n such that α1 p1 · · ·αi piαi+1 ∈ L(e,(GExp,δ))

and αi+1 pi+1 · · ·αn pnαn+1 ∈L(f ,(GExp,δ)). Then there are e1, . . . ,ei, fi+1, . . . , fn ∈

GExp such that

e α1|p1−−−→ e1 −→ ·· · αi|pi−−→ ei⇒ αi+1

f αi+1|pi+1−−−−−→ fi+1 −→ ·· · αn|pn−−−→ fn⇒ αn+1

86 Chapter 3. Guarded Kleene Algebra with Tests

From the transition rules for (GExp,δ), this implies that

e f α1|p1−−−→ e1 f −→ ·· · αi|pi−−→ ei f αi+1|pi+1−−−−−→ fi+1 −→ ·· · αn|pn−−−→ fn⇒ αn+1

Thus, α1 p1 · · ·αn pnαn+1 ∈ L(e f ,(GExp,δ)). Conversely, if α1 p1 · · ·αn pnαn+1 ∈

L(e f ,(GExp,δ)), then e f α1|p1−−−→ g1 −→ ·· · αn|pn−−−→ gn⇒ αn+1. By the transition rules,

there is an i≤ n such that for any j ≤ i, g j = e j f for some e j, and for any j > i,

g j = f j for some f j, such that

e α1|p1−−−→ e1 −→ ·· · αi|pi−−→ ei⇒ αi+1

f αi+1|pi+1−−−−−→ fi+1 −→ ·· · αn|pn−−−→ fn⇒ αn+1

This means α1 p1 · · ·αn pnαn+1 ∈ L(e,(GExp,δ))⋄L(f ,(GExp,δ)). It follows that

L(e,(GExp,δ))⋄L(f ,(GExp,δ)) = L(e f ,(GExp,δ)), as desired.

• In the guarded loop case,

L(e(b)) =
⋃

n∈N
(b⋄L(e))⋄n ⋄ b̄ =

⋃
n∈N

(b⋄L(e,(GExp,δ)))⋄n ⋄ b̄

by the induction hypothesis. If α1 p1 · · ·αn pnαn+1 ∈ (b ⋄ L(e,(GExp,δ)))⋄m ⋄

b̄, then we can find a partition of the indices 1 = i0 ≤ i1 ≤ ·· · ≤ im = n

such that αi j pi j · · ·αi j+1 pi j+1αi(j+1)+1 ∈ b ⋄ L(e,(GExp,δ)) for each j < m and

αn+1 pim−1 · · ·αn pnαn+1 ∈ b ⋄L(e,(GExp,δ)) ⋄ b̄. That is, there exist e1, . . . ,en ∈

GExp such that α1∨αi1 ∨·· ·∨αim−1 ≤ b, αn ≤ b̄,

e α1|p1−−−→ e1 −→ ·· ·
αi1 |pi1−−−−→ ei1 ⇒ αi1+1

and for 0 < j ≤ m,

ei j−1
αi j |pi j−−−→ ei j −→ ·· ·

αi j+1 |pi j+1−−−−−−→ ei j+1 ⇒ αi(j+1)+1

By the transition rules for (−)(b),

e(b) α1|p1−−−→ e1e(b) −→ ·· ·
αi1 |pi1−−−−→ ei1e(b) −→ ·· · αn|pn−−−→ ene(b)⇒ αn+1

3.1. Guarded Kleene Algebra with Tests 87

It follows that α1 p1 · · ·αn pnαn+1 ∈ L(e(b),(GExp,δ)). Conversely, suppose

e(b) α1|p1−−−→ g1 −→ ·· · αn|pn−−−→ gn ⇒ αn+1. Using the transition rules for (−)(b) and

sequential composition, there are expressions e1, . . . ,en such that gi = eie(b) for

each i≤ n, and furthermore for some m ∈ N there is a partition of the indices

1 = i0 ≤ i1 ≤ ·· · ≤ im = n such that α1∨αi1 ∨·· ·∨αim−1 ≤ b, αn ≤ b̄,

e α1|p1−−−→ e1 −→ ·· ·
αi1 |pi1−−−−→ ei1 ⇒ αi1+1

and for 0 < j ≤ m,

ei j−1
αi j |pi j−−−→ ei j −→ ·· ·

αi j+1 |pi j+1−−−−−−→ ei j+1 ⇒ αi(j+1)+1

It follows that α1 p1 · · ·αn pnαn+1 ∈ (b⋄L(e,(GExp,δ)))⋄m ⋄ b̄.

Remark 3.1.11. An equivalent description of the syntactic GKAT automaton (GExp,δ)

defines the function δ : GExp→ (2+Σ×GExp)At as follows: For any e, f ∈ GExp,

b ∈ BExp, α ∈ At, and p ∈ Σ,

δ (b)(α) =

⊤ α ≤ b

⊥ α ≤ b̄
δ (p)(α) = (p,1) δ (e+b f) =

δ (e)(α) α ≤ b

δ (f)(α) α ≤ b̄

δ (e f)(α) =

(p,e′ f) e α|p−−→ e′

δ (f)(α) e⇒ α

⊥ otherwise

δ (e(b))(α) =

(p,e′e(b)) e α|p−−→ e′ and α ≤ b

⊤ α ≤ b̄

⊥ otherwise

Remark 3.1.12. Here we use the syntactic GKAT automaton as our operational model,

defined analogously to Brzozowski’s derivatives of regular expressions [Brz64]. In

the original paper [Smo+20], the operational model of GKAT was given in terms

of a Thompson-like construction. Models of GKAT programs generated by the

syntactic GKAT automaton are bisimilar to automaton models given by the Thompson

construction in [Smo+20]. See [Sch+21] for details.

Example 3.1.13. The operational interpretation of p(b) as a state of (GExp,δ) can

be drawn as follows, where x b|p−−→ y denotes that x α|p−−→ y for every α ≤ b. Rejecting

transitions − ↓ α are suppressed in the picture below, because they are uniquely

88 Chapter 3. Guarded Kleene Algebra with Tests

determined by the rest of the transitions.

p(b) 1p(b)b̄ b̄
b|p

b|p
(3.4)

Lemma 3.1.14. For any e ∈ GExp, write ⟨e⟩ for the set GKAT expressions reachable

from GExp in (GExp,δ). Then ⟨e⟩ is a finite subcoalgebra of (GExp,δ).

Proof. Let #(e) be the cardinality of the set of states in ⟨e⟩. We are going to show

finiteness of #(e) by induction on e. The base cases are easily seen: #(b) = 1 for

b ∈ BExp and #(p) = |{p,1}|= 2 for p ∈ Σ. For the inductive steps, we have

#(e+b f)≤
∣∣∣{e+b f}∪

⋃
{⟨eα⟩ | e α|p−−→ eα and α ≤ b}

∪
⋃
{⟨ fα⟩ | f α|p−−→ fα and α ≤ b̄}

∣∣∣
≤ |{e+b f}|+#(e)+#(f)

#(e f) =
∣∣∣{g f | g ∈ ⟨e⟩}∪

⋃{
⟨ fα⟩ | e α1|p1−−−→ ·· · αn|pn−−−→ en⇒ α and f α|p−−→ fα

}∣∣∣
≤ #(e)+#(f)

#(e(b))≤
∣∣∣{e(b)}∪{ge(b) | g ∈ ⟨e⟩

}∣∣∣
≤ |{e(b)}|+#(e)

Remark 3.1.15. In contrast to Lemma 3.1.14, Brzozowski derivatives of regular

expressions do not produce finite automata [Brz64]. The canonical example of this is

the regular expression a∗, whose Brzozowski derivatives are

a∗ a−→ 0+1a∗ a−→ 0+(0+1a∗) a−→ 0+(0+(0+1a∗)) a−→ ·· ·

The issue with finiteness here is, of course, the “0+” introduced at every step. The

analogous GKAT program, on the other hand, has only one distinct derivative:

p(1) 1|p−−→ 1p(1) 1|p−−→ 1p(1) 1|p−−→ ·· ·

As this example illustrates, the GKAT transition rules do not introduce new syntax to

expressions, in the sense that each of the derivatives of e+b f , e f , and e(b) corresponds

to a unique derivative of either e or f . Every derivative of the program e(b) is of

3.1. Guarded Kleene Algebra with Tests 89

the form e′e(b) for some derivative e′ of e, for example. This ensures that the GKAT

automata generated by GKAT expressions are finite.

The automaton interpretation of GKAT programs suggests a slightly different

notion of equivalence than the relational semantics does, especially if GKAT automata

are seen as interactive machines (like the vending machines from (2.1)). In a setting

where a user can interact with a GKAT program as it runs, states of the GKAT

automaton are observationally equivalent if and only if reading the same sequence of

atoms leads to the same sequence of actions, acceptance, or rejection in each state.

This happens when one state mimics the moves of the other, performing the same

actions in response to the same stimuli.

For example, consider the GKAT automaton in (3.4). The behaviour of p(b) can

be replicated by the behaviour of 1 · p(b), in that both either consume an α ≤ b̄ and

terminate or consume α ≤ b and emit p before transitioning to 1 · p(b). Again, the

appropriate notion of equivalence is obtained by instantiating the coalgebraic notion

of bisimulation in Definition 2.2.8 to GKAT automata.

Lemma 3.1.16. Let R⊆ X×Y be a relation between the state spaces of GKAT automata

(X ,δX) and (Y,δY). Then R is a bisimulation if and only if for any (x,y) ∈ R and α ∈ At,

1. x ↓ α if and only if y ↓ α,

2. x⇒ α if and only if y⇒ α, and

3. if x α|p−−→ x′ and y α|q−−→ y′ for some x′ and y′, then p = q and (x′,y′) ∈ R.

Moreover, the functor G weakly preserves pullbacks (Definition 2.2.11) [Gum98],

so bisimilarity is an equivalence relation and G-coalgebra homomorphisms coincide

with functional bisimulations (see Lemma 2.2.7).

The final GKAT automaton

Interestingly, the bisimulation equivalence class of a GKAT program can be concretely

identified with a certain kind of tree that tracks acceptance, rejection, and transitions

to other states (which are represented as subtrees). Roughly, one can obtain the tree

corresponding to a state of a GKAT automaton by unfolding the transition graph

from that state. The trees obtained this way are states of a GKAT automaton (Z,ζ),

which turns out to be final in the sense described in Definition 2.5.1.

90 Chapter 3. Guarded Kleene Algebra with Tests

Write At+ for the set of all non-empty words consisting of atoms and dom(t) for

the domain of a partial function t : X ⇀ Y .

Definition 3.1.17. A (GKAT) behaviour tree is a partial function t : At+ ⇀ 2+Σ with

At ⊆ dom(t), such that the following hold for all α ∈ At and v ∈ At+:

w ∈ dom(t) t(w) ∈ Σ

wα ∈ dom(t)

w ∈ dom(t) t(w) ∈ 2

wv /∈ dom(t)

We write Z for the set of all behaviour trees. Let ∂αt = λw.t(αw) for any α ∈ At. The

transition structure ζ of (Z,ζ) is defined by

ζ (t)(α) =

t(α) t(α) ∈ 2

(t(α),∂αt) t(α) ∈ Σ

We think of t ∈ Z as a (graphical) tree where the root has leaves for atoms α ∈ At

with t(α) =⊤, and a subtree for every α ∈ At with t(α) ∈ Σ.

Remark 3.1.18. Trees correspond to deterministic infinitary languages [Smo+20;

KT08]. More precisely, every tree can be identified with a language L ⊆ GS∞ =

(At ·Σ)∗ ·At∪ (At ·Σ)ω satisfying the following two conditions: For w ∈ (At ·Σ)∗, α ∈ At,

p,q ∈ Σ, and σ ,σ ′ ∈ GS∞,

1. if wα pσ ,wαqσ ′ ∈ L, then p = q, and

2. if wα ∈ L, then wα pσ /∈ L for any pσ .

See [Smo+20, Appendix C] for details. We forgo a description in terms of guarded

languages in favour of trees, because trees have the determinism constraint built-in.

Theorem 3.1.19. (Z,ζ) is a final GKAT automaton.

Proof. Let (X ,δX) be a GKAT automaton. We define an unrolling map !δX : X → Z as

follows: For any α1 · · ·αn ∈ At+, let

!δX (x)(α1 · · ·αn) =

pn x α1|p1−−−→ x1 · · · αn|pn−−−→ xn

⊤ x α1|p1−−−→ x1 · · · αn−1|pn−1−−−−−→ xn−1⇒ αn

⊥ x α1|p1−−−→ x1 · · · αn−1|pn−1−−−−−→ xn−1 ↓ αn

undefined otherwise

3.1. Guarded Kleene Algebra with Tests 91

To see that !δX is a coalgaebra homomorphism, take α ∈ At. There are three cases to

consider: First, if x ↓ α, then

ζ (!δX (x))(α) = !δX (x)(α) =⊥= G(!δX)(δX(x))(α)

If x⇒ α, then similarly

ζ (!δX (x))(α) = !δX (x)(α) =⊤= G(!δX)(δX(x))(α)

Lastly, if x α|p−−→ y, then

ζ (!δX (x))(α) = (!δX (x)(α),λw.!δX (x)(αw))

= (!δX (x)(α), !δX (y))

= (p, !δX (y))

= G(!δX)(δX(x))(α)

To see that !δX is the unique coalgebra homomorphism into (Z,ζ), let h : (X ,δX)→

(Z,ζ) be any other homomorphism. We show that !δX (x)(α1 · · ·αn) = h(x)(α1 · · ·αn)

for all x ∈ X by induction on n. For the base case, let x ∈ X and α1 ∈ At. If x ↓ α1, then

!δX (x)(α1) =⊥= G(h)(δX(x))(α1) = ζ (h(x))(α1) = h(x)(α1)

Similarly, x⇒ α implies !δX (x)(α1) =⊤ and h(x)(α1) =⊤. If x α1|p1−−−→ y, then

!δX (x)(α1) = p = π1 ◦G(h)(δX(x))(α1) = π1 ◦ζ (h(x))(α1) = h(x)(α1)

where π1(p,y) = p. This establishes the base case. For the inductive step, let

x = x1
α1|p1−−−→ ·· · αn|pn−−−→ xn+1 as assume that !δX (xi) = h(xi) for i ≤ n. By the induc-

tion hypothesis, we know that α1 . . .αn+1 is in both dom(!δX (x)) and dom(h(x)) (see

the first rule in Definition 3.1.17). Furthermore,

!δX (x)(α1 · · ·αnαn+1) = !δX (xn)(αnαn+1) = h(xn)(αnαn+1) = h(x)(α1 · · ·αn+1)

The second equality follows from the induction hypothesis applied to xn. The first and

92 Chapter 3. Guarded Kleene Algebra with Tests

last equalities hold because !δX and h are coalgebra homomorphisms respectively.

It follows from Lemma 2.5.4 that for states x,y of a GKAT automaton (X ,δX),

x↔ y (x and y are bisimilar) if and only if !δX (x) = !δX (y). It is furthermore true that

if !δX (x) = !δX (y), then x and y are language equivalent. If δX is clear from context,

we usually omit it and write !(x) instead of !δX (x).

Lemma 3.1.20. If a two states are bisimilar, then they are language equivalent. That

is, if (X ,δX) is a GKAT automaton and x,y ∈ X , then !(x) = !(y) implies L(x) = L(y).

Proof. Let R be a bisimulation between GKAT-automata (X ,δX),(Y,δY). To show

that L(x) = L(y) for any (x,y) ∈ R, we use Lemma 3.1.16 and show that w ∈ L(x) iff

w ∈ L(y) by induction on the length of w.

Given (x,y) ∈ R and α ∈ At, x⇒ α if and only if y⇒ α by the second property in

Lemma 3.1.16. Hence, α ∈ L(x) if and only if α ∈ L(y).

Now let n > 1 and assume that for any (x,y) ∈ R and w = α1 p1 · · ·αn−1 pn−1αn,

w∈L(x) if and only if w∈L(y). If α1 p1 · · ·αn pnαn+1 ∈L(x), then there is an x′ ∈X such

that x α1|p1−−−→ x′ and α2 p2 · · ·αn pnαn+1 ∈ L(x′). By the third property in Lemma 3.1.16,

y α1|p1−−−→ y′ in (Y,δY) for some y′ such that (x′,y′) ∈ R. By the induction hypothesis,

α2 p2 · · ·αn pnαn+1 ∈ L(y′), and therefore α1 p1 · · ·αn pnαn+1 ∈ L(y). Thus, L(x)⊆ L(y).

By symmetry, L(x) = L(y).

On the other hand, it is not the case that two states of a GKAT automaton are

bisimilar whenever they are language equivalent. For example, p0 and 0 are language

equivalent, since neither accepts any guarded traces. However, p0 makes an outgoing

transition p0 1|p−−→ 0, whereas 0 makes no outgoing transitions. The issue is that p0

has a dead branch that is not equivalent to 0. Language equivalent but nonbisimilar

expressions can be transformed into bisimilar expressions by systematically replacing

dead branches by 0. We discuss this point in more detail in Section 3.1.5.

3.1.4 Sound Program transformations in GKAT

GKAT programs are a variation on regular expressions, which are well-studied in

computer science and intuitive to reason about. In [Smo+20], a set of axioms e = f

is proposed such that L(e) = L(f), and it is shown that these can be used to prove a

number of useful facts about programs. The axioms presented in [Smo+20] (with

3.1. Guarded Kleene Algebra with Tests 93

b∨0 = b b∨ b̄ = 1 b∨ c = c∨b b∨ (c∧d) = (x∨ c)∧ (b∨d)

b∧1 = b b∧ b̄ = 0 b∧ c = c∧b b∧ (c∨d) = (b∧ c)∨ (b∧d)

Figure 3.3: The axioms of Boolean algebra (BA) [Hun04]. We write b =BA c if BA ⊢ b = c.

(U1) e+b e = e

(U2) e1 +b e2 = e2 +b̄ e1

(U3) (e1 +b e2)+c e3 = e1 +b∧c (e2 +c e3)

(U4) e1 +b e2 = be1 +b e2

(U5) (e1 +b e2)e3 = e1e3 +b e2e3

(W1) e1
(b)e2 = e1(e1

(b)e2)+b e2

(W2) (e+c 1)(b) = (ce)(b)

(S1) e1(e2e3) = (e1e2)e3

(S2) 0e = 0

(S3) e0 = 0

(S4) 1e = e

(S5) e1 = e

(S6) bc = b∧ c

(W3)
g = e1g+b e2 E(e1) = 0

g = e1
(b)e2

Figure 3.4: The axiom system for language equivalence of GKAT expressions. Above,
e,e1,e2,e1,e2 ∈ GExp and b,c ∈ BExp. As a theory, GKAT consists of the axioms
of Boolean algebra (see Figure 3.3), (U1)-(U5), (S1)-(S6), and (W1)-(W3). The
theory GKAT0 consists of the axioms BA of Boolean algebra, (U1)-(U5), (S1),
(S2), (S4)- (S6), and (W1)-(W3).

the added axiom (S6) from [Sch+21], which is needed because bc and b∧ c are

syntactically different tests) are given in Figure 3.4.

For instance, the axiom (U5) says that common code at the tail end of branches

can be factored out, and (U2) says that the code in branches of a conditional can be

swapped as long as we negate the test. Returning to our running example, we can

apply (U5) to (3.2) three times (once for each guarded choice).

(n := 1)

 (fizzbuzz +5|n fizz)+3|n

(buzz +5|n n)

(n++)

(n≤ 100)

(done!) (3.5)

Then we can apply (e+b f)+c (g+b h) = e+b∧c (f +c (g+b h)), which is provable from

the axioms of GKAT (see Proposition 3.2.15), to transform (3.5) into (3.3).

Definition 3.1.21. We define the theory GKAT to be the union of the axioms in

Figure 3.4 with the axioms of Boolean algebra (applied to BExp). The theory GKAT0,

also called bisimulation GKAT, is GKAT without (S3).

94 Chapter 3. Guarded Kleene Algebra with Tests

(G0) e+1 f = e

(G1) e+b e = e

(G2) e1 +b e2 = e2 +b̄ e1

(G3) e1 +b (e2 +c e3) = (e1 +b e2)+b∨c e3

(G4) e1 = e

(G5) 1e = e

(G6) 0e = 0

(G7) e1(e2e3) = (e1e2)e3

(G8) (e1 +b e2)e3 = e1e3 +b e2e3

(FP1) e1
(b)e2 = e1(e1

(b)e2)+b e2

(FP2) (e+c 1)(b) = (ce)(b)

(RSP*)
g = e1g+b e2 E(e1) = 0

g = e1
(b)e2

(R0) e0 = 0

(DM) b = 1+b 0

Figure 3.5: An equivalent axiom system for language equivalence of GKAT expressions.
Here, e,e1,e2,e1,e2 ∈ GExp and b,c ∈ BExp. As a theory, GKAT is equivalent to
the axioms of Boolean algebra (see Figure 3.3), (G0)-(G8), (FP1), (FP2), (R0),
(DM), and (RSP∗). The theory GKAT0 is equivalent to the axioms BA of Boolean
algebra, (G0)-(G8), (FP1), (FP2), (DM), and (RSP∗).

An alternative axiomatization of GKAT

In later sections, it will be convenient6 for us to use a different but equivalent set of

axioms for GKAT and GKAT0.

Proposition 3.1.22. Let e, f ∈GExp. Then GKAT ⊢ e = f if and only if e = f is provable

from the axioms in Figure 3.5, and GKAT0 ⊢ e = f if and only if e = f is provable from

the axioms in Figure 3.5 without (R0).

Proof. The axioms (G1) and (G2) are (U1) and (U2) respectively, and (G4)-(G8)

are (S5), (S4), (S2), (S1), and (U5) respectively. The axioms (FP1), (FP2), and

(RSP∗) are (W1)-(W3) respectively. Since (S3) is (R0), it suffices to show that GKAT0

is equivalent to Figure 3.5 without (R0). This leaves us with the following proof

obligation: We need to show that (U3), (U4), and (S6) are derivable from Figure 3.5

without (S3), and that (G0), (G3), and (DM) are derivable in GKAT0.

To derive (U3),

(e+b f)+c g
(G2)
= g+c̄ (f +c̄ e)

(G3)
= (g+c̄ f)+b̄∨c̄ e

(G2)
= e+b̄∨c̄ (f +c̄ g)

(BA)
= e+b∧c (f +c g)

(G3) can similarly be derived from (U2), (U3), and (BA). The axiom (U4) e+b f =

6Figure 3.5 conveniently restricts to a complete axiomatization of the skip-free fragment, as we will
see in Section 3.2.

3.1. Guarded Kleene Algebra with Tests 95

be+b f is derivable from Figure 3.5 as follows:

be+b f (DM)
= (1+b 0)e+b f (G8)

= (1e+b 0e)+b f
(G5,6)
= (e+b 0)+b f (*)

= e+b f

The identity (*) can be derived from Figure 3.5 and (U2) (which we have just derived

from (G2) and (G3)) as follows:

e+b f
(G0)
= (e+1 0)+b f

(U2)
= e+b∧1 (0+b f)

(BA)
= e+b (0+b f)

(G3)
= (e+b 0)+b∨b f

(BA)
= (e+b 0)+b f

The identity (S6) is derived from Figure 3.5 as follows:

bc (DM)
= (1+b 0)(1+c 0) (G8,5,6)

= (1+c 0)+b 0

(U2)
= 1+b∧c (0+b 0) (G1)

= 1+b∧c 0 (DM)
= b∧ c

It remains to derive (G0) and (DM) in GKAT0. Both derivations are short calculations.

e+1 f (U2)
= f +0 e (U4)

= 0 f +0 e (S2)
= 0+0 e (S2)

= 0e+0 e (U4)
= e+0 e (U1)

= e

b (U1)
= b+b b (S5)

= b1+b b
(U2,U4)
= b1+b b̄b (BA)

= b1+b 0 (U4)
= 1+b 0

As a result of Proposition 3.1.22, we are going to derive equivalences in GKAT

and GKAT0 using Figure 3.5 instead of Figure 3.4 from now on.

A note about side conditions

Both Figure 3.4 and Figure 3.5 include an axiom that, much like Salomaa’s axiom

(RSP∗) in Figure 2.1, requires a side-condition in terms of a function E. The function

E : GExp→ BExp is defined by

E(b) = b E(p) = 0 E(e1 +b e2) = (b∧E(e1))∨ (b̄∧E(e2))

E(e1 · e2) = E(e1)∧E(e2) E(e(b)) = b̄

The side condition E(0) = 0 in (RSP∗) in Figure 2.1 is called the empty word property

by Salomaa, as it determines whether an expression represents an accepting state.

Similarly, E(e) = 0 follows from the axioms of Boolean algebra if and only if ¬(e⇒ α)

96 Chapter 3. Guarded Kleene Algebra with Tests

for any α ∈ At. The side condition E(e) =BA 0 is necessary for the soundness of

(RSP∗): Let b ̸= 0 and observe that GKAT0 ⊢ 1 = 1 ·1+b 1. The conclusion of (RSP∗)

would then say that GKAT0 ⊢ 1 = 1(b), but L(1) ̸= b̄ = L(1(b)).

Theorem 3.1.23 (Soundness). Let e, f ∈ GExp.

1. ([Sch+21]) If GKAT0 ⊢ e = f , then !(e) = !(f).

2. ([Smo+20]) If GKAT ⊢ e = f , then L(e) = L(f).

Proof. By an induction on the proof of GKAT0 ⊢ e = f , one can show that the con-

gruence relation induced by bisimulation GKAT satisfies the conditions of being a

bisimulation on (GExp,δ) from Lemma 3.1.16.7 This establishes 1. To see 2., observe

that L(e ·0) = L(e)⋄L(0) = L(e)⋄ /0 = /0 = L(0), so that e ·0 = 0 is sound for language

equivalence.

3.1.5 Completeness of Bisimulation GKAT with UA

Being able to transform one GKAT program into another using the axioms of GKAT

is useful, but the question arises: Do the axioms capture all equivalences that hold?

In [Smo+20], a partial answer to this question is provided: If we extend GKAT with

an axiom called the uniqueness axiom (UA), then the resulting set of axioms is sound

and complete with respect to the language semantics. The problem with this is that

UA is not really a single axiom, but rather an axiom scheme, which makes both its

presentation and application somewhat unwieldy.

Definition 3.1.24. Given ei j, fi ∈ GExp such that E(ei j) =BA 0 and bi j ∈ BExp for

i, j ∈ {1, . . . ,n}, the uniqueness axiom for {(ei j, fi j,bi j)}i, j≤n is the inference rule

{gi = ei1g1 +bi1 ei2g2 +bi2 · · ·+bin fi1}i≤n {hi = ei1h1 +bi1 ei2h2 +bi2 · · ·+bin fi2}i≤n

g1 = h1

We use UA, or the uniqueness axiom, to refer to the set consisting of all uniqueness

axioms for any {(ei j, fi j,bi j)}i, j≤n with E(ei j) =BA 0 for all i, j ≤ n. Given e, f ∈ GExp,

e≡ f denotes that GKAT+UA ⊢ e = f

e≡0 f denotes that GKAT0 +UA ⊢ e = f
7Alternatively, the soundness of GKAT with respect to behavioural equivalence is a special case of

the soundness theorem that appears directly after Theorem 4.5.5 in Chapter 4.

3.1. Guarded Kleene Algebra with Tests 97

A system of equations of the form

{xi = ei1x1 +bi1 ei2x2 +bi2 · · ·+bin fi}i≤n (3.6)

is called a left-affine system if bi j ∧ bik =BA 0 for any i ≤ n and j < k ≤ n. If we

furthermore have E(ei j) =BA 0 for all i, j ≤ n, then the left-affine system above is

called Salomaa. Given an equivalence relation ≈ on GExp, a ≈-solution to (3.6) is a

function ϕ : {x1, . . . ,xn}→ GExp such that

ϕ(xi)≈ ei1ϕ(x1)+bi1 ei2ϕ(x2)+bi2 · · ·+bin fi

for each i≤ n. Two solutions ϕ1,ϕ2 are ≈-equivalent, written ϕ1 ≈ ϕ2, if ϕ1(xi)≈ ϕ2(xi)

for each i≤ n. An alternative statement of the uniqueness axiom is that every left-

affine system of equations has at most one ≈-solution up to ≈-equivalence.

Theorem 3.1.25. The uniqueness axiom is sound for both the behaviour and language

semantics of GKAT. That is, if e≡0 f , then !(e) = !(f), and if e≡ f , then L(e) = L(f).

Proof. To prove the soundness of ≡0 with respect to the behaviour tree interpretation

of GKAT expressions, we extend the proof of soundness of GKAT0 (Theorem 3.1.23),

a proof by induction on the derivation of GKAT0 ⊢ e = f , with an additional inductive

step for the UA. This proves that ≡0 is a bisimulation equivalence, which implies the

first soundness result Lemma 2.5.4 and Theorem 3.1.19.

We are left with showing that for any two ≡0-solutions ϕ1,ϕ2 to a Salomaa

system S, (ϕ1(xi),ϕ2(xi)) satisfies the three properties of a pair in a bisimulation in

Lemma 3.1.16. To this end, suppose that ϕ1,ϕ2 are two ≡0-solutions to the Salomaa

system of equations

S = {xi = ei1x1 +bi1 · · ·+bin fi}i≤n

and let ϕ1(xi) = gi and ϕ2(xi) = hi for i≤ n. The induction hypothesis says that both

(gi,ei1g1+bi1 · · ·+bin fi) and (hi,ei1h1+bi1 · · ·+bin fi) satisfy the three properties of a pair

in a bisimulation in Lemma 3.1.16. We need to show that for any α ∈ At, i≤ n, and

p ∈ Σ, (i) gi ↓ α if and only if hi ↓ α, (ii) gi ⇒ α if and only if hi ⇒ α, and (iii) if

gi
α|p−−→ g′, then hi

α|p−−→ h′ for some h′ such that g′ ≡0 h′.

(i) Suppose gi ↓ α. By the induction hypothesis, ei1g1 +bi1 · · ·+bin fi ↓ α. Since S is

98 Chapter 3. Guarded Kleene Algebra with Tests

Salomaa, either α ≤ bi j and ei j ↓ α for some j, or α ≤ b̄in and fi ↓ α. In either

case, ei1h1 +bi1 · · ·+bin fi ↓ α and by the induction hypothesis hi ↓ α as well. The

converse is similar.

(ii) Suppose gi⇒ α. By the induction hypothesis, ei1g1 +bi1 · · ·+bin fi⇒ α. Since

S is Salomaa, this means that α ≤ b̄in and fi⇒ α. This implies that ei1h1 +bi1

· · ·+bin fi⇒ α, so by the induction hypothesis, hi⇒ α. The converse is similar.

(iii) Now suppose gi
α|p−−→ g′. By the induction hypothesis, ei1g1 +bi1 · · ·+bin fi

α|p−−→ g′′

for some g′′ ≡0 g′. Since S is Salomaa, there are two possibilities: Either (a)

α ≤ bi j and ei j
α|p−−→ e′ and g′′ = e′g j for some j, or (b) α ≤ b̄in and fi

α|p−−→ g′′.

(a) In this case, we also have ei jh j
α|p−−→ e′h j. By the induction hypothesis,

hi
α|p−−→ h′ for some h′ ≡0 e′h j. Since g j ≡0 h j, g′ ≡0 e′g j ≡0 e′h j ≡0 h′ by

congruence. By transitivity, g′ ≡0 h′.

(b) In this case, ei1h1 +bi1 · · ·+bin fi
α|p−−→ g′′ as well, so by the induction hypoth-

esis there is an h′ ≡0 g′′ such that hi
α|p−−→ h′. This concludes this case, as

g′ ≡0 g′′ ≡0 h′.

This concludes the proof that ≡0 is a bisimulation equivalence on (GExp,δ). Sound-

ness then follows from Lemma 2.5.4.

Soundness with respect to language equivalence is [Smo+20, Theorem 6.2].

As we will see next, when added to bisimulation GKAT, the uniqueness axiom

enables a proof of completeness that resembles Salomaa’s proof of completeness for

his first axiomatization of regular algebra [Sal66]. While our completeness theorem

characterizes bisimilarity of GKAT expressions (and not language equivalence),

Salomaa’s completeness proof is for language equivalence of regular expressions.

This apparent contrast is less surprising than it first appears, as language equivalence

of DFAs happens to coincide with bisimilarity of DFAs.

Solutions and homomorphisms

One can associate every finite GKAT automaton with a system of equations as follows:

Given any finite GKAT automaton (X ,δX), we obtain the left-affine system

S(X ,δX) = {xi = pi1x1 +bi1 pi2x2 +bi2 · · ·+bin ci}i≤n

3.1. Guarded Kleene Algebra with Tests 99

where X = {x1, . . . ,xn}, and for any i, j ≤ n, xi
bi j|pi j−−−→ x j and xi⇒ ci. Observe that the

left-affine system associated with a GKAT automaton is always Salomaa.

Recall from the proof of soundness (Theorem 3.1.25) that ≡0 is a bisimulation

equivalence. By Lemma 2.2.12 item 3, it is the kernel of a coalgebra homomorphism

[−]≡0 : (GExp,δ)→ (GExp/≡0, [δ]≡0). The next result (Lemma 3.1.26) exposes the

close relationship between coalgebra homomorphisms of the form [−]≡0 ◦ϕ and

provable equivalence. It is a special case of Lemma 4.5.10.

Lemma 3.1.26. Let (X ,δX) be a finite GKAT automaton with associated system of

equations S. A map ϕ : X → GExp is a ≡0-solution to S if and only if [−]≡0 ◦ϕ is a

G-coalgebra homomorphism (X ,δX)→ (GExp/≡0, [δ]≡0).

In particular, the inclusion homomorphism ⟨e⟩ ↪→ (GExp,δ) is a solution to the

system associated with e, for every e ∈ GExp.

Lemma 3.1.26 is the key lemma needed to prove completeness of bisimulation

GKAT with the uniqueness axiom. Given any two homomorphisms ϕ1,ϕ2 : (X ,δX)→

(GExp,δ) from a finite GKAT automaton (X ,δX), we know that [−]≡0 ◦ϕ1, [−]≡0 ◦ϕ2

are also homomorphisms. By Lemma 3.1.26, ϕ1,ϕ2 are ≡0-solutions to the left-affine

system associated with (X ,δX), so by the uniqueness axiom, ϕ1(x)≡0 ϕ2(x) for any

x ∈ X . This is equivalent to saying that [−]≡0 ◦ϕ1 = [−]≡0 ◦ϕ2.

Theorem 3.1.27 (Completeness I). For any e, f ∈ GExp, if !(e) = !(f), then e≡0 f .

Proof. Suppose !(e) = !(f), and recall that this is equivalent to e↔ f . That is, there is

a bisimulation (R,δR) between ⟨e⟩ and ⟨ f ⟩ with (e, f) ∈ R. From the discussion above,

we know that the GKAT automaton homomorphisms [−]≡0 ◦π1, [−]≡0 ◦π2 : (R,δR)→

(GExp/≡0, [δ]≡0) are equal. In particular, [e]≡0 = [f]≡0 , or equivalently, e≡0 f .

3.1.6 Completeness of GKAT with UA

Theorem 3.1.27 establishes the completeness of bisimulation GKAT with UA as an

axiomatization of bisimilarity of GKAT programs. In this section, we reduce the

completeness of GKAT with UA, the axiomatization of language equivalence of GKAT

programs, to the completeness of bisimulation GKAT with UA. Despite bisimilarity

being a less traditional equivalence in the context of Kleene algebra, the reduction

provides a simpler completeness proof than the original one from [Smo+20] and

100 Chapter 3. Guarded Kleene Algebra with Tests

justifies the study of bisimilarity in the pursuit of completeness for GKAT. The section

begins with an overview of the proof, and then proceeds with the formal details.

Overview

In a nutshell, the reduction of GKAT with UA to bisimulation GKAT with UA proceeds

as follows: Given two expressions e1,e2 ∈ GExp such that L(e1) = L(e2), we can find

expressions ⌊e1⌋ ,⌊e2⌋ such that ei ≡ ⌊ei⌋, and furthermore ⌊e1⌋ ↔ ⌊e2⌋. Given com-

pleteness of bisimulation GKAT with UA, we obtain e1 ≡ ⌊e1⌋ ≡0 ⌊e2⌋ ≡ e2. Since ≡0

is contained in ≡, e1 ≡ e2 by transitivity. Assuming we can construct the expressions

⌊e1⌋ and ⌊e2⌋, this line of reasoning proves the theorem below.

Theorem 3.1.28 (Completeness II). For any e, f ∈ GExp, if L(e) = L(f), then e≡ f .

The construction of ⌊e1⌋ and ⌊e2⌋ from e1 and e2 above relies on the uniqueness

axiom and the characterization of bisimilarity equivalence classes of GKAT programs

as behaviour trees (Section 3.1.3). Roughly, ⌊e1⌋ and ⌊e2⌋ are obtained by “pruning”

redundant branches from the behaviour trees of e1 and e2, and translating the

resulting behaviour trees back into expressions.

Pruning dead branches

Recall that the only difference between GKAT and bisimulation GKAT is the axiom

(R0), which says that e0 = 0. Combining this observation with the tree analysis of

behaviours of GKAT programs, it becomes clear that the guarded strings recognized

by e correspond precisely to the live branches of its behaviour tree, those that end in

successful termination. The rest of the branches are dead, and are redundant with

respect to the language semantics. The notions of live and dead generally apply to

GKAT automata in the following way.

Definition 3.1.29 ([Smo+20, Definition 5.3]). Given a GKAT automaton (X ,δX),

the set of dead states D(X ,δX) is the largest subset D⊆ X such that for any x ∈ D and

α ∈ At, either x ↓ α or x α|p−−→ y for some y ∈ D. A state that is not a dead state is live.

Equivalently, the set of live states in a GKAT automaton (X ,δX) is the smallest

subset V ⊆ X such that (1) if x⇒ α for some α ∈ At, then x ∈V , and (2) if x α|p−−→ y for

some y ∈V , then x ∈V .

Since expressions and trees form GKAT automata, they can be live or dead. The

following lemma characterizes liveness of expressions as states of (GExp,δ).

3.1. Guarded Kleene Algebra with Tests 101

Lemma 3.1.30. Let e ∈ GExp. Then e is dead if and only if e≡0 e0.

Proof. If e≡0 e0, then e↔ e0 by soundness. It follows that e is dead, because e0 is

dead. For the converse, we check that

R = {(e,e0) | e is dead}

is a bisimulation by verifying the three properties in Lemma 3.1.16 and then conclude

using the first completeness theorem of GKAT (Theorem 3.1.27).

1. We begin with the first property in Lemma 3.1.16, that e ↓ α iff e0 ↓ α . If e ↓ α ,

then e0 ↓ α by the transition rules. If e0 ↓ α, then either e ↓ α or e⇒ α and

0 ↓ α. But e is dead, so ¬(e⇒ α). Thus, e ↓ α.

2. The second property is trivial: Since e is dead, ¬(e⇒ α) and ¬(e0⇒ α) for all

α ∈ At, so vacuously e⇒ α iff e0⇒ α.

3. Let (e,e0)∈ R and suppose e α|p−−→ e′ and e0 α|q−−→ e′′. If e′ is live, then e α|p−−→ e′ α1|p1−−−→
·· · αn|pn−−−→ f ⇒ α for some α ∈ At, implying that e is live. Since e is dead, this

shows that e′ is dead as well. Furthermore, e α|p−−→ e′, p = q, and e′′ = e′0 by the

transition rules. This puts (e′,e′′) ∈ R, establishing the third property.

It follows that R is a bisimulation. Since (e,e0) ∈ R, e↔ e0, and by the first complete-

ness theorem (Theorem 3.1.27), e≡0 e0.

Roughly, the expressions ⌊e1⌋ and ⌊e2⌋ appearing in the completeness proof

sketch (see the text under the Overview heading above) are constructed by pruning

dead subexpressions from e1 and e2. In Section 3.4, we will see how this can be done

syntactically if e1 and e2 are of a particular form. In full generality, this is much easier

to do at the level of the behaviour trees seen in Section 3.1.3. Recall that the set of

all behaviour trees forms a final GKAT automaton (Z,ζ).

Definition 3.1.31. A (behavioural) coequation is a subset C ⊆ Z. A behaviour tree is

called nested if it is of the form !δ (e) for some e ∈ GExp. The nesting coequation is the

set of all nested behaviour trees.

We define a pruning operator ⌊−⌋C given C ⊆ Z via corecursion [Rut98]. Infor-

mally, given a tree t, the tree ⌊t⌋C is obtained by deleting every subtree of t that

102 Chapter 3. Guarded Kleene Algebra with Tests

appears in C. This can be formally defined as follows: Consider the G-coalgebra

(Z,ζC), where for any t ∈ Z, we define

ζC(t)(α) =

⊥ t(α) ∈ Σ and ∂αt ∈C

(t(α),∂αt) t(α) ∈ Σ and ∂αt /∈C

t(α) t(α) ∈ 2

The structure ζC is essentially obtained from ζ by deleting transitions to trees in C.

Definition 3.1.32. Given a coequation C, the C-pruning operator ⌊−⌋C : Z → Z is

defined to be the behaviour map !ζC
: (Z,ζC)→ (Z,ζ), where ζC is defined above.

Lemma 3.1.33. Given C ⊆ Z, the C-pruning map ⌊−⌋C : Z→ Z satisfies the following

for any t ∈ Z:

⌊t⌋C (α) =

⊥ t(α) ∈ Σ,∂αt ∈C

t(α) otherwise
∂α ⌊t⌋C =

⌊∂αt⌋C t(α) ∈ Σ,∂αt /∈C

undefined otherwise

Proof. Both identities follow directly from Definition 3.1.32.

The following surprising result tells us that the nesting coequation is stable

under all pruning operators. Its proof is involved, so for the sake presentation I have

given the proof its own Section 3.1.7.

Theorem 3.1.34. For any coequation C, and for any nested t, ⌊t⌋C is nested.

Proof. See Section 3.1.7.

In particular, if we take D to be the coequation consisting of dead behaviour

trees (the dead states of (Z,ζ)), then ⌊!δ (e)⌋D is nested, for any e∈GExp. That means

there is an expression ⌊e⌋ such that !δ (⌊e⌋) = ⌊!δ (e)⌋D. This expression is uniquely

determined modulo bisimilarity, because ⌊e⌋ ↔ f implies that !δ (⌊e⌋) = !δ (f) by

Lemma 2.5.4. By the completeness theorem for bisimulation GKAT (Theorem 3.2.18),

⌊e⌋ is uniquely determined up to ≡0.

Definition 3.1.35. The syntax pruning operator ⌊−⌋ : GExp→ GExp/≡0 is defined

e 7→ ⌊e⌋, where ⌊e⌋ is the unique ≡0-class of e such that !δ (⌊e⌋) = ⌊!δ (e)⌋D.

3.1. Guarded Kleene Algebra with Tests 103

Note that we will often abuse notation and treat ⌊e⌋ both as an expression—a

representative of the ≡0-equivalence class ⌊e⌋ denotes—and as a behaviour tree—the

unique behaviour tree representing the ≡0-equivalence class of e given by Theo-

rem 3.1.27. The benefit of doing this is the same as the benefit of identifying

solutions with the homomorphisms they represent (see the text after Lemma 3.1.26).

Actually, syntax pruning can alternatively be defined as a certain GKAT automaton

homomorphism, so long as we remove redundant transitions from (GExp,δ).

Definition 3.1.36. Let (X ,δX) be a GKAT automaton. We define the normalization

of (X ,δX) to be the automaton (X ,⌊δX⌋), where

⌊δX⌋(x)(α) =

⊥ δ (x)(α) = (p,x′) and x′ is dead

δX(x)(α) otherwise
(3.7)

A GKAT automaton (X ,δX) is called normal if δX = ⌊δX⌋.

Lemma 3.1.37. Syntax pruning is a GKAT automaton homomorphism

⌊−⌋ : (GExp,⌊δ⌋)→ (GExp/≡0, [δ]≡0)

Proof. We are going to show that the relation R= {(e,⌊e⌋) | e∈GExp} is a bisimulation

between (GExp,⌊δ⌋) and (GExp/≡0, [δ]≡0). To this end, let e ∈ GExp. If e ↓δ α, then

e ↓⌊δ⌋ α and ⌊e⌋ ↓ α. Similarly if e⇒δ α. If e α|p−−→δ e′, there are two cases:

• If e ↓⌊δ⌋ α, then e′ is dead. This implies that ⌊e′⌋= ⌊!δ (e′)⌋D is the constant ⊥

behaviour tree, so ⌊e⌋(α) =⊥ and ⌊e⌋ ↓ α as well.

• If e α|p−−→⌊δ⌋ e′, then e′ is live. This means that !δ (e′) is live as well, so ⌊e⌋ α|p−−→ ⌊e′⌋

as desired (see Definition 3.1.32).

The general goal of normalization is to semantically make language-equivalent

states of a GKAT automaton bisimilar without changing the language they accept.

This is the content of the following result.

Lemma 3.1.38. Let (X ,δX) be a GKAT automaton.

(i) For any x ∈ X , L(x,(X ,δX)) = L(x,(X ,⌊δX⌋)), and

(ii) for any x,y ∈ X , x↔ y in (X ,⌊δX⌋) if and only if L(x) = L(y).

104 Chapter 3. Guarded Kleene Algebra with Tests

Proof. Item (i) is [Smo+20, Lemma 5.6(ii)]. Item (ii) is [Smo+20, Lemma 5.2].

In order for our proposed proof of Theorem 3.1.28 to go through, only two

properties of the syntactic pruning operator need to be established.

Theorem 3.1.39. For any e ∈ GExp, e≡ ⌊e⌋. Also, for any e, f ∈ GExp, L(e) = L(f) if

and only if ⌊e⌋ ↔ ⌊ f ⌋.

In order to prove Theorem 3.1.39, we need the following lemma.

Lemma 3.1.40. If φ is a ≡0-solution to the left-affine system of equations S(X ,⌊δX⌋),

then φ is also a ≡-solution to the left-affine system (X ,δX).

Proof. Given x ∈ X , write the equation in S(X ,δX) associated with x as

x = p1x1 +b1 · · ·+bn−1 pnxn +bn c (x in (X ,δX))

with b1, . . . ,bn,c pairwise disjoint. Without loss of generality, we can assume that

the dead states appearing in the equation above are x j, . . . ,xn. In which case,

φ(x j)≡0 · · · ≡0 φ(xn)≡0 0, because φ is a ≡0-solution to (X ,⌊δX⌋) and x j, . . . ,xn have

no outgoing transitions. On the other hand, since in (X ,⌊δX⌋) transitions are the

same as in (X ,δX) but without transitions to dead states, the equation in S(X ,⌊δX⌋)

for x is

x = p1x1 +b1 · · ·+b j−1 (b̄ j · · · b̄n)c (x in (X ,⌊δX⌋))

Putting these observations together,

φ(x)≡0 p1φ(x1)+b1 · · ·+b j−1 (b̄ j · · · b̄n)c (φ ≡0-sol. to (X ,⌊δX⌋))

≡0 p1φ(x1)+b1 · · ·+b j−1 0+b j (b̄ j+1 · · · b̄n)c (G9,G2,G3)

≡0 p1φ(x1)+b1 · · ·+b j−1 0+b j · · ·+bn c (repeat prev.)

≡ p1φ(x1)+b1 · · ·+b j−1 p jφ(x j)+b j · · ·+bn c

(G9) is derived in Proposition 3.2.15 (see also Remark 3.2.16). This shows that φ is

a ≡-solution to (X ,δX).

Proof of Theorem 3.1.39. To see that (1) holds, observe that by Lemma 3.1.37, ⌊−⌋ is

a ≡0-solution to (GExp,⌊δ⌋). By Lemma 3.1.40, ⌊−⌋ is also a ≡-solution to (GExp,δ).

3.1. Guarded Kleene Algebra with Tests 105

Now, since (GExp,δ) is locally finite, by UA it has a unique ≡-solution. The identity is

also a ≡-solution to (GExp,δ) by Lemma 3.1.26, so it follows that ⌊−⌋ ≡ id. In other

words, e≡ ⌊e⌋ for all e ∈ GExp.

To see that (2) holds, let L(e) = L(f). By (1) and soundness, L(e) = L(⌊e⌋) and

L(f) = L(⌊ f ⌋). By Lemma 3.1.37, e,(GExp,⌊δ⌋)↔ ⌊e⌋ ,(GExp,δ), and similarly for

f . By Lemma 3.1.38, e↔ f in (GExp,⌊δ⌋), so by transitivity, ⌊e⌋ ↔ ⌊ f ⌋.

We are now ready to prove the main result of this section, Theorem 3.1.28, the

completeness of GKAT with UA for language equivalence.

Proof of Theorem 3.1.28. Let e1,e2 ∈ GExp such that L(e1) = L(e2). By Theo-

rem 3.1.39, we can find expressions ⌊e1⌋ ,⌊e2⌋ such that ei ≡ ⌊ei⌋ and ⌊e1⌋ ↔ ⌊e2⌋.

Given completeness of bisimulation GKAT with UA (Theorem 3.1.27), we obtain

e1 ≡ ⌊e1⌋ ≡0 ⌊e2⌋ ≡ e2. Since ≡0 is contained in ≡, e1 ≡ e2 by transitivity.

3.1.7 The Proof of Theorem 3.1.34

This subsection is dedicated to the proof of Theorem 3.1.34, which requires a par-

ticular construction on behaviour trees. Namely, we need to be able to compose

behaviour trees using the algebraic operations of GKAT. Corecursively, given s, t ∈ Z,

b ∈ BExp, we define

(s+b t)(α) =

s(α) α ≤ b

t(α) α ≤ b̄
∂α(s+b t) =

∂αs α ≤ b

∂αt α ≤ b̄

(st)(α) =

s(α) s(α) ∈ ⊥+Σ

t(α) s(α) =⊤
∂α(st) =

(∂αs)t s(α) ∈ Σ

∂αt s(α) =⊤

s(b)(α) =

s(α) s(α) ∈ Σ,α ≤ b

⊤ α ≤ b̄

⊥ otherwise

∂αs(b) =

(∂αs)s(b) s(α) ∈ Σ,α ≤ b

undefined otherwise

This extends all of the GKAT programming constructs to behaviour trees. We can

now define the map ⌊⌈−⌋⌉ : GExp→ Z, the initial semantics of bisimulation GKAT,

106 Chapter 3. Guarded Kleene Algebra with Tests

recursively on GKAT expressions:

⌊⌈b⌋⌉= !δ (b) ⌊⌈p⌋⌉= !δ (p) ⌊⌈e+b f ⌋⌉= ⌊⌈e⌋⌉+b ⌊⌈ f ⌋⌉ (3.8)

⌊⌈e f ⌋⌉= ⌊⌈e⌋⌉⌊⌈ f ⌋⌉
⌊⌈

e(b)
⌋⌉
= ⌊⌈e⌋⌉ (b) (3.9)

for any b ∈ BExp and p ∈ Σ, e, f ∈ GExp.

Recall that the bisimulation semantics of GKAT is given by the unique coalgebra

homomorphism !δ : (GExp,δ)→ (Z,ζ) (Lemma 2.5.4 and Theorem 3.1.19). The next

theorem says that the initial semantics coincides with the bisimulation semantics.

Theorem 3.1.41. For any e ∈ GExp, ⌊⌈e⌋⌉= !δ (e).

Proof. It suffices to show that ⌊⌈−⌋⌉ is a GKAT automaton homomorphism. This

amounts to showing that the following rules hold:

e ↓ α

⌊⌈e⌋⌉(α) = 0

e⇒ α

⌊⌈e⌋⌉(α) = 1

e α|p−−→ e′

⌊⌈e⌋⌉ α|p−−→
⌊⌈

e′
⌋⌉

We do this by induction on the transition rules for e. In the base case, there are two

subcases.

• By definition, ⌊⌈b⌋⌉(α) = 0 if and only if b ↓ α, and ⌊⌈b⌋⌉(α) = 1 if and only if

b⇒ α . Since b does not admit any transitions in (GExp,δ), the last implication

holds vacuously.

• We have that p α|p−−→ 1 for any α ∈ At. By definition of ⌊⌈p⌋⌉, we have ⌊⌈p⌋⌉(α) = p

and ∂α ⌊⌈p⌋⌉ = ⌊⌈1⌋⌉, and hence ⌊⌈p⌋⌉ α|p−−→ ⌊⌈1⌋⌉. Furthermore, p does not termi-

nate (successfully or unsuccessfully) in (GExp,δ), so the first two rules hold

vacuously.

In the inductive step, suppose the inferences above hold for e and f , and b ∈ BExp.

• If e+b f ↓ α, then either α ≤ b and e ↓ α, or α ≤ b̄ and f ↓ α. In the first

case, ⌊⌈e+b f ⌋⌉(α) = ⌊⌈e⌋⌉(α) = 0, and in the second ⌊⌈e+b f ⌋⌉(α) = ⌊⌈ f ⌋⌉(α) = 0.

Furthermore, if e+b f ⇒ α, then either α ≤ b and e⇒ α, or α ≤ b̄ and f ⇒ α.

In the first case, ⌊⌈e+b f ⌋⌉(α) = ⌊⌈e⌋⌉(α) = 1, and in the second ⌊⌈e+b f ⌋⌉(α) =

⌊⌈ f ⌋⌉(α) = 1. Finally, if e+b f α|p−−→ g, then either α ≤ b and e α|p−−→ g, or α ≤ b̄

and f α|p−−→ g. In the first case, ⌊⌈e+b f ⌋⌉(α) = ⌊⌈e⌋⌉(α) = p and ∂α ⌊⌈e+b f ⌋⌉ =

3.1. Guarded Kleene Algebra with Tests 107

∂α(⌊⌈e⌋⌉+b ⌊⌈ f ⌋⌉) = ∂α ⌊⌈e⌋⌉= ⌊⌈g⌋⌉, and in the second, ⌊⌈e+b f ⌋⌉(α) = ⌊⌈ f ⌋⌉(α) = p

and ∂α ⌊⌈e+b f ⌋⌉= ∂α ⌊⌈ f ⌋⌉= ⌊⌈g⌋⌉.

• If e f ↓ α , then either e ↓ α , or e⇒ α and f ↓ α . In the first case, ⌊⌈e⌋⌉(α) = 0 and

⌊⌈e f ⌋⌉(α)= ⌊⌈e⌋⌉(α)= 0, and in the second, ⌊⌈e f ⌋⌉(α)= ⌊⌈e⌋⌉⌊⌈ f ⌋⌉(α)= ⌊⌈ f ⌋⌉(α)= 0.

Furthermore, if e f ⇒ α, then e⇒ α and f ⇒ α. Thus, ⌊⌈e f ⌋⌉(α) = ⌊⌈ f ⌋⌉(α) = 1.

Finally, if e f α|p−−→ g, then either e⇒ α and f α|p−−→ g, or e α|p−−→ e′ and g = e′ f . In

the first case, ⌊⌈e f ⌋⌉(α) = ⌊⌈ f ⌋⌉(α) = p and

∂α ⌊⌈e f ⌋⌉= ∂α(⌊⌈e⌋⌉⌊⌈ f ⌋⌉) = ∂α ⌊⌈ f ⌋⌉= ⌊⌈g⌋⌉ ,

meaning ⌊⌈e f ⌋⌉ α|p−−→ ⌊⌈g⌋⌉, and in the second ⌊⌈e f ⌋⌉(α) = ⌊⌈e⌋⌉(α) = p, and

∂α ⌊⌈e f ⌋⌉= ∂α ⌊⌈e⌋⌉⌊⌈ f ⌋⌉=
⌊⌈

e′
⌋⌉
⌊⌈ f ⌋⌉= ⌊⌈g⌋⌉ ,

thus showing that ⌊⌈e f ⌋⌉ α|p−−→ ⌊⌈g⌋⌉ again.

• If e(b) ↓ α, then α ≤ b and either e ↓ α or e⇒ α. In either case,
⌊⌈

e(b)
⌋⌉
(α) =

⌊⌈e⌋⌉ (b)(α) = 0. Furthermore, if e(b)⇒ α , then α ≤ b̄ and
⌊⌈

e(b)
⌋⌉
= ⌊⌈e⌋⌉ (b)(α) = 1

by definition. Finally, if e(b) α|p−−→ g, then α ≤ b, e α|p−−→ e′, and g = e′e(b). This

means that
⌊⌈

e(b)
⌋⌉
(α) = ⌊⌈e⌋⌉ (b)(α) = ⌊⌈e⌋⌉(α) = p and

∂α

[[
e(b)
]]
= ∂α ⌊⌈e⌋⌉ (b) = (∂α ⌊⌈e⌋⌉)⌊⌈e⌋⌉ (b) =

⌊⌈
e′
⌋⌉[[

e(b)
]]
= ⌊⌈g⌋⌉ .

Next, we are going to show that pruning interacts compositionally with the

algebraic operations on trees. In particular, given s, t ∈ Z and b ∈ BExp, we show that

the C-prunings of st and s(b) are prunings of s with respect to different coequations.

Lemma 3.1.42. For any s, t ∈ Z, b ∈ BExp, and C ⊆ Z,

1. ⌊st⌋C = ⌊s⌋C† where C† = {r | rt ∈C}.

2.
⌊
s(b)
⌋

C = (⌊s⌋C•)(b) where C• = {r | rs(b) ∈C}.

In the proof of this lemma, we use Lemma 3.1.16 as it applies to (Z,ζ). Namely,

that if for any (s, t) ∈ R and α ∈ At, s(α) = t(α) and (∂αs,∂αt) ∈ R, then R is a

bisimulation on (Z,ζ).

108 Chapter 3. Guarded Kleene Algebra with Tests

Proof. We are going to show that the following two relations are bisimulations.

R = {(⌊st⌋C ,⌊s⌋C† ⌊t⌋C) | s, t ∈ Z}∪∆Z (3.10)

Q =
{
(r⌊s(b)⌋C,r(⌊s⌋C•)

(b))
∣∣∣ r,s ∈ Z

}
∪∆Z (3.11)

where ∆Z = {(s,s) | s ∈ Z}. To see that R is a bisimulation, let α ∈ At and observe

⌊st⌋C (α) =

⊥ ∂α(st) ∈C

st(α) otherwise
(def. ⌊−⌋−)

=

⊥ s(α) ∈ Σ,∂αs ∈C†

⊥ s(α) =⊤,∂αt ∈C

s(α) s(α) ∈ Σ,∂αs /∈C†

t(α) s(α) =⊤,∂αt /∈C

(expanding the

conditions

)

=

⊥ ⌊s⌋C† (α) =⊥

⊥ s(α) =⊤,⌊t⌋C (α) =⊥

⌊s⌋C† (α) ⌊s⌋C† (α) ∈ Σ

⌊t⌋C (α) ⌊s⌋C† (α) =⊤

(def. ⌊−⌋−)

= ⌊s⌋C† ⌊t⌋C (α)

On the other hand, we have

∂α ⌊st⌋C =

⌊∂α(st)⌋C st(α) ∈ Σ,∂α(st) /∈C

undefined otherwise
(def. ⌊−⌋C)

=

⌊(∂αs)t⌋C s(α) ∈ Σ,∂αs /∈C†

⌊∂αt⌋C s(α) =⊤,∂αt /∈C

undefined otherwise

(def. ∂α(st), C†)

∂α(⌊s⌋C† ⌊t⌋C) =

(∂α ⌊s⌋C†)⌊t⌋C ⌊s⌋C† ∈ Σ

∂α ⌊t⌋C ⌊s⌋C† (α) =⊤

undefined otherwise

(def. ∂α(⌊s⌋C† ⌊t⌋C))

3.1. Guarded Kleene Algebra with Tests 109

=

(∂α ⌊s⌋C†)⌊t⌋C s(α) ∈ Σ,∂αs /∈C†

⌊∂αt⌋C s(α) =⊤,∂αt /∈C

undefined otherwise

(def. ⌊−⌋−)

=

⌊∂αs⌋C† ⌊t⌋C s(α) ∈ Σ,∂αs /∈C†

⌊∂αt⌋C s(α) =⊤,∂αt /∈C

undefined otherwise

(def. ⌊−⌋−)

It follows that (∂α ⌊st⌋C ,∂α(⌊s⌋C† ⌊t⌋C)) ∈ R. Hence, R is a bisimulation. By finality of

(Z,ζ), R⊆ ∆Z, so ⌊st⌋C = ⌊s⌋C† . Now consider Q. If r(α) ∈ ⊥+Σ, then

r
⌊

s(b)
⌋

C
(α) = r(α) = r(⌊s⌋C•)

(b)(α)

∂α(r
⌊

s(b)
⌋

C
) = (∂αr)

⌊
s(b)
⌋

C

∂α(r(⌊s⌋C•)
(b)) = (∂αr)(⌊s⌋C•)

(b)

Hence, it suffices to consider the case in which r(α) = ⊤. For α ≤ b̄ in this case,

r
⌊
s(b)
⌋

C (α) =⊤= r ⌊s⌋ (b)C•(α). For α ≤ b in this case,

r⌊s(b)⌋C(α) =

⊥ s(b)(α) ∈ Σ,∂α(s(b)) ∈C

s(b)(α) otherwise

=

⊥ s(α) ∈ Σ,(∂αs)s(b) ∈C

s(b)(α) otherwise
(def. s(b))

=

⊥ s(α) ∈ Σ,∂αs ∈C•

s(b)(α) otherwise
(def. C•)

=

⊥ s(α) ∈ Σ,∂αs ∈C•

⊥ s(α) =⊤

s(α) s(α) ∈ Σ,∂αs /∈C•

(def. s(b))

110 Chapter 3. Guarded Kleene Algebra with Tests

=

⊥ ⌊s⌋C• (α) =⊥

⊥ ⌊s⌋C• (α) =⊤

⌊s⌋C• (α) ⌊s⌋C• (α) ∈ Σ

(def. ⌊−⌋−)

= r(⌊s⌋C•)
(b)(α)

on the one hand, and on the other we have both

∂α(r⌊s(b)⌋C) =

⌊∂αs(b)⌋C s(b)(α) ∈ Σ,∂αs(b) /∈C

undefined otherwise

=

⌊(∂αs)s(b)⌋C s(α) ∈ Σ,∂αs /∈C•

undefined otherwise
(def. s(b), C•)

=

⌊∂αs⌋C• ⌊s(b)⌋C s(α) ∈ Σ,∂αs /∈C•

undefined otherwise
(1., with t = s(b))

∂α(r(⌊s⌋C•)
(b)) =

(∂α ⌊s⌋C•)(⌊s⌋C•)(b) ⌊s⌋C• (α) ∈ Σ

undefined otherwise

=

(∂α ⌊s⌋C•)(⌊s⌋C•)(b) s(α) ∈ Σ,∂αs /∈C•

undefined otherwise
(def. ⌊−⌋−)

=

⌊∂αs⌋C• (⌊s⌋C•)(b) s(α) ∈ Σ,∂αs /∈C•

undefined otherwise
(def. ⌊−⌋−)

Hence, (∂α(r⌊s(b)⌋C),∂α(r(⌊s⌋C•)(b))) ∈ Q. This shows that Q is a bisimulation, so

⌊s(b)⌋C = (⌊s⌋C•)(b) as desired.

We are now ready to prove Theorem 3.1.34, the focus of this subsection.

Proof of Theorem 3.1.34. Let t = !δ (e). We proceed by induction on e. In the base

cases, t = !δ (b) for some b ∈ BExp or t = !δ (p) for some p ∈ Σ. In the first base case,

since dom(!δ (b))⊆ At, ⌊!δ (b)⌋C = !δ (b), by definition of ⌊t⌋C. In the second base case,

if t = !δ (p), then there are two possibilities to consider. If !δ (1) ∈C, then ∂αt ∈C and

⌊t⌋C = !δ (p0). If !δ (1) /∈C, then ⌊t⌋C = !δ (p).

3.1. Guarded Kleene Algebra with Tests 111

For the inductive step, there are three cases.

• Suppose t = !δ (e1 +b e2). Let fi ∈ GExp satisfy !δ (fi) = ⌊!δ (ei)⌋C. Then ⌊t⌋C =

!δ (f1 +b f2). Indeed, if α ≤ b, then

⌊t⌋C (α) =

⊥ ∂αt ∈C

t(α) otherwise

=

⊥ ∂α !δ (e1) ∈C

!δ (e1)(α) otherwise

= !δ (f1)(α)

∂α ⌊t⌋C =

undefined ∂αt ∈C

⌊∂αt⌋C otherwise

=

undefined ∂α !δ (e1) ∈C

⌊∂α !δ (e1)⌋C otherwise

= ∂α !δ (f1)

and similarly if α ≤ b̄. It follows that ⌊t⌋C = !δ (f1 +b f2).

• Suppose t = !δ (e1e2) and using the induction hypothesis let !δ (f1) = ⌊!δ (e1)⌋C†

and !δ (f2) = ⌊!δ (e2)⌋C, where C† = {!δ (g) | !(ge2) ∈ C}. We show that ⌊t⌋C =

!δ (f1 f2) as follows. By Theorem 3.1.41, C† = {!δ (g) | !δ (g)!δ (e2) ∈C}, so

!δ (f1 f2) = !δ (f1)!δ (f2) (Theorem 3.1.41)

= ⌊!δ (e1)⌋C† ⌊!δ (e2)⌋C (ind. hyp.)

= ⌊!δ (e1)!δ (e2)⌋C (Lemma 3.1.42)

= ⌊!δ (e1e2)⌋C (Theorem 3.1.41)

= ⌊t⌋C

• Suppose t = !δ (e(b)) and using the induction hypothesis let !δ (f) = ⌊!δ (e)⌋C•

where C• = {!δ (g) | !δ (ge(b)) ∈C}. We are going to show that ⌊t⌋C = !δ (f (b)). By

Theorem 3.1.41, C• = {!δ (g) | !δ (g)!δ (e)(b) ∈C}, like in Lemma 3.1.42, and

!δ (f (b)) = !δ (f)(b) (Theorem 3.1.41)

= ⌊!δ (e)⌋C•
(b) (ind. hyp.)

=
⌊

!δ (e)
(b)
⌋

C
(Lemma 3.1.42)

=
⌊

!δ (e
(b))
⌋

C
(Theorem 3.1.41)

= ⌊t⌋C

112 Chapter 3. Guarded Kleene Algebra with Tests

3.1.8 Concluding remarks about GKAT

In this section, we saw an overview of the language and axiomatization of

GKAT [Smo+20], an inference system for deriving equivalences between simple

imperative programs built from if-then-else branching and while loops. The axiom-

atization is not ideal for two reasons: The axiomatization of recursion, i.e., (RSP∗)

and UA, are non-algebraic, meaning they are not sound under substitution of action

symbols for terms. In particular, UA is cumbersome for algebraic reasoning, as it

requires the construction of a solvable left-affine system in every application. This

situation is an instance of a far more general axiomatization problem, as we will see

in Chapter 4. In the next section, we address non-algebraicity and elimination of UA

from the axiomatization by restricting our attention to a fragment of GKAT.

3.2 Skip-free Guarded Kleene Algebra with Tests

In this section, we introduce what we call the skip-free fragment of GKAT, consisting

of programs that do not contain assert statements in the body (other than assert false).

In other words, Boolean statements are restricted to control statements, formally

only appearing in conditional +b and loop constructs. For this fragment, we show

that the axiom scheme UA can be avoided entirely. In fact, this is true for language

semantics as well as for bisimulation semantics.

More specifically, we prove two completeness results: In Section 3.3, we start

by focusing on the bisimulation semantics of the skip-free fragment, and then in

Section 3.4 expand our argument to its language semantics. We first provide a reduc-

tion of the completeness of skip-free GKAT modulo bisimilarity to the completeness

of Grabmayer and Fokkink’s one-free regular expressions modulo bisimilarity, the

case study in Chapter 2 that culminated in Theorem 2.4.13. We then provide a

reduction of the completeness of skip-free GKAT modulo language semantics to the

completeness of skip-free GKAT modulo bisimilarity via a technique inspired by the

tree pruning approach of [Sch+21], which appeared in Section 3.1.6.

Finally, in Section 3.5, we connect our semantics of skip-free GKAT expressions

to the established semantics of full GKAT. We also connect the syntactic proofs

between skip-free GKAT expressions in both our axiomatization and the existing one.

In conjunction with the results of Sections 3.3 and 3.4, the results in Section 3.5 are

3.2. Skip-free Guarded Kleene Algebra with Tests 113

a significant step towards determining whether the axioms of GKAT give a complete

description of program equivalence.

3.2.1 Skip-free Expressions

The fragment of GKAT in focus is the one that excludes sub-programs that can accept

immediately without performing any action. Since the excluded programs necessarily

involve the “skip” command, we call the fragment that avoids them skip-free. Among

others, programs of the form assert b for b ̸= false and while false do p, which is

equivalent to assert true, are not skip-free GKAT programs.

Definition 3.2.1. Given a set Σ of atomic actions, the set GExpsf of skip-free GKAT

expressions is given by the grammar

GExpsf ∋ e1,e2 ::= 0 | p ∈ Σ | e1 +b e2 | e1 · e2 | e1
(b)e2

where b ranges over the Boolean algebra expressions BExp.

Unlike full GKAT, in skip-free GKAT the loop construct is treated as a binary

operation, analogous to Kleene’s original star operation [Kle56], which was also

binary. This helps us avoid loops of the form e(b), which skips when b does not hold.

The expression e1
(b)e2 corresponds to e1

(b) · e2 in GKAT.

Example 3.2.2. Using the same notational shorthand as in Example 3.1.1, the block of

code representing fizzbuzz2 in Figure 3.1 can be cast as the skip-free GKAT expression

(n := 1) · ((fizzbuzz +3|n∧5|n (fizz +3|n (buzz +5|n n))) ·n++)(n≤ 100)(done!)

Note how we use a skip-free loop of the form e1
(b)e2 instead of the looping construct

e1
(b) before concatenating with e2, as was done for GKAT.

Remark 3.2.3. As it is missing the skip command, skip-free GKAT is automatically

strictly less expressive than GKAT. However, one might wonder if adding a simple

done! action to the end of a GKAT program creates a skip-free GKAT program. This

is false: For instance, if 0 < b < 1, p,q ∈ Σ, then (q(p+b 1))(b)p is not expressible in

skip-free GKAT. This statement will be made more precise in Example 3.5.5.

114 Chapter 3. Guarded Kleene Algebra with Tests

p α|p−−→✓

e1
α|p−−→ ξ α ≤ b

e1 +b e2
α|p−−→ ξ

e2
α|p−−→ ξ α ≤ b̄

e1 +b e2
α|p−−→ ξ

e1
α|p−−→ e′

e1e2
α|p−−→ e′e2

e1
α|p−−→✓

e1e2
α|p−−→ e2

e1
α|p−−→ e′ α ≤ b

e1
(b)e2

α|p−−→ e′(e1
(b)e2)

e1
α|p−−→✓ α ≤ b

e1
(b)e2

α|p−−→ e1
(b)e2

e2
α|p−−→ ξ α ≤ b̄

e1
(b)e2

α|p−−→ ξ

Figure 3.6: The small-step semantics of skip-free GKAT expressions, (GExpsf ,δsf). Above,
e1,e2,e′ ∈ GExpsf , p ∈ Σ, b ∈ BExp, α ∈ At, and ξ ∈✓+GExpsf .

3.2.2 Semantics

Like GKAT, we interpret skip-free GKAT expressions as automata (small-step seman-

tics), as behaviours (operational semantics), and as languages (language semantics).8

Automata

The small-step semantics of skip-free GKAT uses a slight variation on GKAT automata.

Definition 3.2.4. A skip-free automaton is an H-coalgebra (X ,δX), where the functor

H is defined for any X and h : X → Y by

HX = (⊥+Σ× (✓+X))At H(h)(θ)(α) =

⊥ θ(α) =⊥

(p,✓) θ(α) = (p,✓)

(p,h(x)) θ(α) = (p,x) ∈ Σ×X

for θ ∈ HX and α ∈ At. Like in a GKAT automaton, we write x α|p−−→ ξ if δX(x)(α) =

(p,ξ), although ξ can be the successful termination symbol ✓ in skip-free automata.

We write x ↓ α if δX(x)(α) = ⊥. We also adopt the convention of writing x b|p−−→ x′

where b ∈ BExp to represent the set of transitions x α|p−−→ x′ with α ≤ b.

Definition 3.2.5. We equip the set GExpsf of all skip-free GKAT expressions with

the automaton structure (GExpsf ,δsf) given in Figure 3.6, representing step-by-step

execution. Given e ∈ GExpsf , we denote the set of states reachable from e by ⟨e⟩ and

call this the small-step semantics of e.

The small-step semantics of skip-free GKAT expressions is inspired by Brzo-

zowski’s derivatives [Brz64], which provide an automata-theoretic description of the

8We will connect these to the relational semantics from Definition 3.1.3 in Section 3.5.

3.2. Skip-free Guarded Kleene Algebra with Tests 115

step-by-step execution of a regular expression. Our first lemma tells us that, like

one-free regular expressions (Lemma 2.4.5) and GKAT expressions (Lemma 3.1.14),

skip-free GKAT expressions correspond to finite automata.

Lemma 3.2.6. For any e ∈ GExpsf , ⟨e⟩ has finitely many states.

Proof. By induction on e. The automaton ⟨0⟩ has a single state with no transitions

and ⟨p⟩ consists of a single state that accepts all of At after p. Write #(e) for the

number of expressions reachable from e. For the inductive step, it suffices to notice

that #(e1 +b e2), #(e1e2), and #(e1
(b)e2) are bounded above by #(e1)+#(e2)+1. This

is clear in all cases except for e1
(b)e2. In the e1

(b)e2 case, observe that every state in

⟨e1
(b)e2⟩ (other than e1

(b)e2) is either of the form e′1(e1
(b)e2) for some e′1 ∈ ⟨e1⟩ or is of

the form e′2 for some state e′2 ∈ ⟨e2⟩. These are in one-to-one correspondence with

elements of ⟨e1⟩⊔ ⟨e2⟩, so #(e1
(b)e2)≤ #(e1)+#(e2)+1.

Remark 3.2.7. Another way to formulate the transition structure of (GExpsf ,δsf) is to

define δsf directly. Given e1,e2 ∈ GExp, p ∈ Σ, and b ∈ BExp, we set

δsf(0)(α) =⊥ δsf(p)(α) = (p,✓) δsf(e1 +b e2)(α) =

δsf(e1)(α) α ≤ b

δsf(e2)(α) α ≤ b̄

δsf(e1e2)(α) =

(p,e′e2) δsf(e1)(α) = (p,e′)

(p,e2) δsf(e1)(α) = (p,✓)

⊥ δsf(e1)(α) =⊥

δsf(e1
(b)e2) =

(p,e′(e1

(b)e2)) δsf(e1)(α) = (p,e′)

(p,e1
(b)e2) δsf(e1)(α) = (p,✓)

⊥ δsf(e1)(α) =⊥

Example 3.2.8. The automaton that arises from the program fizzbuzz2 is depicted in

Figure 3.7, with b = n≤ 100, c = 3|n, and d = 5|n. The expression e is the same as in

Example 3.2.2, e1 is the e but without n := 0 in front, and e2 = (n++) · e1.

The automaton interpretation of a skip-free GKAT expression (its small-step

semantics) provides an intuitive visual depiction of the details of its execution. Like

in GKAT, it is possible for distinct states to represent equivalent programs. The

116 Chapter 3. Guarded Kleene Algebra with Tests

e e1 e2

✓

1 | n := 1

bcd | fizzbuzz , bcd̄ | fizz ,
bc̄d | buzz , bc̄d̄ | n

1 | n++

b̄ | done!

Figure 3.7: The automaton representing fizzbuzz2.

remaining two semantics of skip-free GKAT programs capture two ways in which

skip-free programs can be equivalent: modulo bisimilarity, and modulo guarded

language equivalence. Like in GKAT, the key difference between these two semantics

is their ability to distinguish programs that crash early in the execution versus

programs that crash later (this is apparent in the axiomatizations of both semantics).

We start by presenting the language semantics, as this is the more traditional one

associated with GKAT (and regular) expressions.

Language semantics

Formally, a skip-free guarded trace is a nonempty string of the form α1 p1 · · ·αn pn,

where each αi ∈ At and pi ∈ Σ. Note that the only difference between guarded traces

and skip-free guarded traces is the atomic test that appears at the end of a guarded

trace is left implicit in a skip-free guarded trace. A skip-free guarded language is a set

of skip-free guarded traces. Skip-free guarded languages should be thought of as sets

of strings denoting successfully terminating computations.

Definition 3.2.9 (Language acceptance). In a skip-free automaton (X ,δX) with a

state x ∈ X , the language accepted by x is the skip-free guarded language

L(x,(X ,δX)) = {α1 p1 · · ·αn pn | x α1|p1−−−→ x1 −→ ·· · −→ xn
αn|pn−−−→✓}

If (X ,δX) is clear from context, we simply write L(x) instead of L(x,(X ,δX)). If

L(x) = L(y), we say that x and y are language equivalent.

Each skip-free GKAT expression is a state in the automaton of expressions

(Definition 3.2.5), and therefore accepts a language. As in Definition 3.2.9, the

language accepted by a skip-free GKAT expression is the set of successful runs of the

program it denotes. Analogously to GKAT, we can describe this language inductively.

3.2. Skip-free Guarded Kleene Algebra with Tests 117

Lemma 3.2.10. Given an expression e ∈ GExpsf , the language accepted by e in

(GExpsf ,δsf), i.e., L(e) = L(e,(GExpsf ,δsf)), can be computed inductively as follows:

L(0) = /0 L(p) = {α p | α ∈ At} L(e1 +b e2) = bL(e1)∪ b̄L(e2)

L(e1 · e2) = L(e1) ·L(e2) L(e1
(b)e2) =

⋃
n∈N

(bL(e1))
n · b̄L(e2)

Here, we write bL= {α pw∈ L |α ≤ b} and L1 ·L2 = {wu |w∈ L1,u∈ L2}, while L0 = {ε}

(where ε denotes the empty word) and Ln+1 = L ·Ln.

Proof. Since ⟨0⟩ consists of a single state with no outgoing transitions, clearly L(0)= /0.

Similarly, the only outgoing transitions of each p ∈ Σ are p α|p−−→✓, so L(p) = {α p |

α ∈ At}. Every successfully terminating path out of e1+b e2 is of the form e1+b e2
α|p−−→

g1
α1|p1−−−→ ·· · −→ gn

αn|pn−−−→✓ where either α ≤ b and e1
α|p−−→ g1

α1|p1−−−→ ·· · −→ gn
αn|pn−−−→✓ or

α ≤ b̄ and e2
α|p−−→ g1

α1|p1−−−→ ·· · −→ gn
αn|pn−−−→✓. Every successfully terminating path out

of e1e2 is of the form e1e2
α1|p1−−−→ g1e2 −→ ·· · αn|pn−−−→ e2

α ′1|q1−−−→ ·· · α ′m|qm−−−→✓ where e1
α1|p1−−−→

g1
α1|p1−−−→ ·· · −→ gn

αn|pn−−−→✓ and e2
α ′1|q1−−−→ h1

α ′2|q2−−−→ ·· · −→ hn
α ′m|qm−−−→✓.

Lastly, we consider e1
(b)e2. Call a cycle in an H-coalgebra minimal if every

state appears at most once in the cycle. Note that every cycle is a composition

of minimal cycles. Minimal cycles containing e1
(b)e2 are of the form e1

(b)e2
α p−→

g1(e1
(b)e2)

α1|p1−−−→ ·· · αn|pn−−−→ e1
(b)e2 where α ≤ b and e1

α|p−−→ g1
α1|p1−−−→ ·· · −→ gn

αn|pn−−−→ ✓.

Successfully terminating paths from e1
(b)e2 that do not contain cycles are of the

form e1
(b)e2

α ′|q−−→ h1
α ′1|q1−−−→ ·· · −→ hn

α ′m|qm−−−→ ✓ where e2
α ′|q−−→ h1

α ′1|q1−−−→ ·· · −→ hn
α ′m|qm−−−→ ✓.

Putting these together, a successfully terminating path from e1
(b)e2 is a composition

of minimal cycles followed by a successfully terminating path coming from e2. It

follows that the guarded traces accepted by e1
(b)e2 are those of the form w1 · · ·wnu,

where each wi ∈ L(e1) and starts with an atomic test below b and u ∈ L(e2) and starts

with an atomic test below b̄. In symbols, L(e1
(b)e2) =

⋃
n∈N(bL(e1))

n · b̄L(e2).

Lemma 3.2.10 provides a way of computing the language of an expression e

without having to generate the automaton for e.

Bisimulation semantics

Another, finer, notion of equivalence that we can associate with skip-free automata is

bisimilarity. Bisimilarity of H-coalgebras can be concretely characterized as follows.

118 Chapter 3. Guarded Kleene Algebra with Tests

Lemma 3.2.11. Given skip-free automata (X ,δX) and (Y,δY), a relation R⊆ X×Y is a

bisimulation if and only if for any (x,y) ∈ R, α ∈ At and p ∈ Σ,

1. x ↓ α if and only if y ↓ α,

2. x α|p−−→✓ if and only if y α|p−−→✓, and

3. for any (x′,y′) ∈ R, x α|p−−→ x′ if and only if y α|p−−→ y′.

We call x and y bisimilar if (x,y) ∈ R for some bisimulation R and write x↔ y.

The bisimilarity equivalence class of a state is called its behaviour.

Example 3.2.12. In the automaton below, x1 and x2 are bisimilar. This is witnessed by

the bisimulation {(x1,x2),(x2,x2)}.

x1 x2

✓

α | p

ᾱ | q

α | p

ᾱ | q

We can use bisimulations to witness language equivalence.

Lemma 3.2.13. Let e1,e2 ∈ GExpsf . If e1↔ e2, then L(e1) = L(e2).

Proof. Similar to the proof of Lemma 3.1.20.

The converse of Lemma 3.2.13 is not true: Consider, for example, the program

p(1)q that repeats the atomic action p ∈ Σ indefinitely, never reaching q. Since

L(p(1)q) =
⋃

n∈N
L(p)n · /0 = /0 = L(0)

we know that L(p(1)q) = L(0). But p(1)q and 0 are not bisimilar, since Figure 3.6 tells

us that p(1)q α|p−−→ p(1)q whereas 0 ↓ α.

Axioms

Next, we give an inference system for bisimilarity and language equivalence consisting

of equations and equational inference rules.

Definition 3.2.14. The theory sfGKAT, called skip-free (language) GKAT, consists of

the axioms in Figure 3.8. The theory sfGKAT0, called skip-free bisimulation GKAT, is

sfGKAT without the axiom (R0). Given e, f ∈GExpsf , we write e≡ f if sfGKAT ⊢ e = f

and e≡0 f if sfGKAT0 ⊢ e = f .

3.2. Skip-free Guarded Kleene Algebra with Tests 119

(G0) e+1 f = e

(G1) e+b e = e

(G2) e1 +b e2 = e2 +b̄ e1

(G3) e1 +b (e2 +c e3) = (e1 +b e2)+b∨c e3

(G6) 0e = 0

(G7) e1(e2e3) = (e1e2)e3

(G8) (e1 +b e2)e3 = e1e3 +b e2e3

(FP1) e1
(b)e2 = e1(e1

(b)e2)+b e2

(RSP)
g = e1g+b e2

g = e1
(b)e2

(R0) e0 = 0

Figure 3.8: As a theory, skip-free language GKAT (sfGKAT) consists of (G0)-(G3), (G6)-
(G8), (FP1), (R0), and (RSP). The theory skip-free bisimulation GKAT (sfGKAT0)
consists of (G0)-(G3), (G6)-(G8), (FP1), and (RSP). Note the omission of (G4),
(G5), (FP2), and (DM), as well as the change from (RSP*) to (RSP).

The axiom (RSP) in Figure 3.8 is the axiom (RSP∗) from Figure 3.5 without the

non-algebraic side condition E(e) = 0. It follows from an easy induction on terms

that BA ⊢ E(e) = 0 holds for every skip-free GKAT expression e.

We also note the following theorems of sfGKAT and of sfGKAT0.

Proposition 3.2.15. Let e1,e2,e3,e4 ∈ GExpsf , b,c,d ∈ BExp. Then the following hold.

(G3’) (e1 +b e2)+c e3 ≡0 e1 +b∧c (e2 +c e3)

(G9) If b≤ c, then e1 +b e2 ≡0 (e1 +c e3)+b e2.

(G10) (e1 +b e2)+c e3 ≡0 (e1 +b∧c e2)+c e3

(BD) (e1 +c e2)+b 0≡0 (e1 +b 0)+c (e2 +b 0)

(S6’) (e+b 0)+c 0≡0 e+b∧c 0

(G7’) (e1
(b)e2)e3 ≡0 e1

(b)(e2e3)

(FP2’) (e1 +b e3)
(b)(e4 +b e2)≡0 e1

(b)e2

Proof. For (G3’), we have

(e1 +b e2)+c e3 ≡0 e3 +c̄ (e2 +b̄ e1) (G2)

≡0 (e3 +c̄ e2)+b̄∨c̄ e1 (G3)

≡0 (e3 +c̄ e2)+(b∧c) e1 (BA)

≡0 e1 +b∧c (e2 +c e3) (G2)

120 Chapter 3. Guarded Kleene Algebra with Tests

For (G9), first observe that

e1 +b e2 ≡0 (e2 +1 g)+b̄ e1 (G2, G0)

≡0 e2 +b̄ (g+b̄ e1) (G3’,BA)

≡0 (e1 +b g)+b e2 (G2)

Instantiating e1 +b e2 ≡0 (e1 +b g)+b e2 with g = e1 +c e3, we have

e1 +b e2 ≡0 (e1 +b (e1 +c e3))+b e2

≡0 ((e1 +b e1)+c e3)+b e2 (G3, BA)

≡0 (e1 +c e3)+b e2 (G1)

For (G10),

(e1 +b e2)+c e3
(G3’)
≡0 e1 +b∧c (e2 +c e3)

(G3, BA)
≡0 (e1 +b∧c e2)+c e3

For (BD),

(e1 +b 0)+c (e2 +b 0)≡ e1 +b∧c (0+c (e2 +b 0)) (G3’)

≡ e1 +b∧c ((e2 +b 0)+c̄ 0) (G2)

≡ e1 +b∧c (e2 +b∧c̄ (0+c̄ 0)) (G3’)

≡ e1 +b∧c (e2 +b∧c̄ 0) (G1)

≡ (e1 +b∧c e2)+(b∧c)∨(b∧c̄) 0 (G3)

≡ (e1 +b∧c e2)+b 0 (BA)

≡ (e1 +c e2)+b 0 (G10)

For (S6’), analogous to (S6) in Figure 3.4,

(e+b 0)+c 0
(G10)
= e+b∧c (0+c 0)

(G1)
= e+b∧c 0

For (G7’),

(e1
(b)e2)e3 ≡0 (e1(e1

(b)e2)+b e2)e3 (FP1)

3.2. Skip-free Guarded Kleene Algebra with Tests 121

≡0 e1((e1
(b)e2)e3)+b e2e3 (G8,G7)

≡0 e1
(b)(e2e3) (RSP)

For (FP2’), let g = (e1 +b e3)
(b)(e4 +b e2). Then

g≡0 (e1 +b e2)g+b (e4 +b e2) (FP1)

≡0 (e1g+b e2g)+b (e4 +b e2) (G8)

≡0 e1g+b e2 (G9, with c = b, G2, BA)

≡0 e1
(b)e2 (RSP)

Remark 3.2.16. The theory sfGKAT is a restriction of GKAT to GExpsf , so the deriva-

tions above are also valid in GKAT0. This means the identities in Proposition 3.2.15

hold for general GKAT expressions e, f ∈ GExp.

Note that the identities (BD) and (S6’) of Proposition 3.2.15 can be rephrased

using slightly different notation. If we write be for the skip-free expression e+b 0,

then (BD) becomes b(e1 +c e2)≡0 be1 +b be2 (Boolean distributivity on the left), and

(S6’) becomes bce = (b∧ c)e.

Like in GKAT, the axiom (R0) is sound with respect to the language semantics

in Definition 3.2.9 but not sound with respect to the bisimulation semantics.

Theorem 3.2.17 (Soundness). For any e1,e2 ∈ GExpsf ,

1. If e1 ≡0 e2, then e1↔ e2.

2. If e1 ≡ e2, then L(e1) = L(e2).

Proof. We begin with the proof that ≡0 is a bisimulation on (GExpsf ,δsf). Let e1 ≡0 e2.

We specifically that show (e1,e2) satisfies 1.-3. of Lemma 3.2.11 by induction on the

proof of sfGKAT0 ⊢ e1 = e2. In the base case, we consider the equational axioms.

• If (e1,e2) is (e,e+1 f), (e,e+b e), (e+b f , f +b̄ e), (e+b (f +c g),(e+b f)+b∨c g),

(0,0e), ((e+b f)g,eg+b f g), or (e(b) f ,e(e(b) f)+b f), then δsf(e1) = δsf(e2). For

122 Chapter 3. Guarded Kleene Algebra with Tests

example, for any α ∈ At,

δsf(e+1 f)(α) =

δsf(e)(α) α ≤ 1

δsf(f)(α) α ≤ 0
= δsf(e)(α)

because α ≤ 1 always holds. The most exciting cases are the last two. Below,

missing case distinctions are assumed to be reject transitions.

δsf((e+b f)g)(α) =

(p,e′g) e+b f α|p−−→ e′

(p,g) e+b f α|p−−→✓
(def. δsf(−·−))

=

(p,e′g) e α|p−−→ e′ and α ≤ b

(p, f ′g) f α|p−−→ f ′ and α ≤ b̄

(p,g) e α|p−−→✓ and α ≤ b

(p,g) f α|p−−→✓ and α ≤ b̄

(def. δsf(−+b−))

=

(p,e′g) e α|p−−→ e′ and α ≤ b

(p,g) e α|p−−→✓ and α ≤ b

(p, f ′g) f α|p−−→ f ′ and α ≤ b̄

(p,g) f α|p−−→✓ and α ≤ b̄

(rearranging)

=

δsf(eg)(α) α ≤ b

δsf(f g)(α) α ≤ b̄
(def. δsf(−·−))

= δsf(eg+b f g)(α) (def. δsf(−+b−))

δsf(e(e(b) f)+b f)(α) =

δsf(e(e(b) f))(α) α ≤ b

δsf(f)(α) α ≤ b̄
(def. δsf(−+b−))

=

(p,e′(e(b) f))(α) e α|p−−→ e′ and α ≤ b

(p,e(b) f)(α) e α|p−−→✓ and α ≤ b

δsf(f)(α) α ≤ b̄

(def. δsf(−·−))

= δsf(e(b) f)(α) (def. δsf(−(b)−))

3.2. Skip-free Guarded Kleene Algebra with Tests 123

• In the (e(f g),(e f)g) case, let α ∈ At. There are a few subcases to consider.

– Since e ↓ α if and only if e f ↓ α , e(f g) ↓ α if and only if (e f)g ↓ α . That is,

1. in Lemma 3.2.11 is satisfied by this α.

– If e α|p−−→✓, then e f α|p−−→ f . Therefore, e(f g) α|p−−→ f g and (e f)g α|p−−→ f g.

– If e α|p−−→ e′, then e(f g) α|p−−→ e′(f g). We also know that e f α|p−−→ e′ f , so

(e f)g α|p−−→ (e′ f)g. Since e′(f g) ≡0 (e′ f)g, in conjunction with the previ-

ous subcase we see that 3. of Lemma 3.2.11 is satisfied for this α.

In the induction step, we consider (Con) and (RSP). The remaining rules are routine.

• We are going to show that the congruence rules preserve the properties

in Lemma 3.2.11. Suppose e1 ≡0 e2 and (e1,e2) satisfies the conditions of

Lemma 3.2.11.

– It suffices to consider α ≤ b in the (e1 +b g,e2 +b g) subcase. This follows

directly from the induction hypothesis applied to (e1,e2) if α ≤ b.

– In the (e1g,e2g) subcase, e1 ↓ α if and only if e2 ↓ α by the induction

hypothesis, and eig ↓ α if and only if ei ↓ α. Similarly, e1
α|p−−→ ✓ if and

only if e2
α|p−−→ ✓, so e1g α|p−−→ g if and only if e2g α|p−−→ g. If e′1 ≡0 e′2, then

e1
α|p−−→ e′1 if and only if e2

α|p−−→ e′2. It follows that e1g α|p−−→ e′1g if and only if

e2g α|p−−→ e′2g.

– The subcase (ge1,ge2) is easily seen from the (g,g) base case.

– Consider (e1
(b)g,e2

(b)g). We only cover the α ≤ b case here because e1
(b)g

and e2
(b)g have the same outgoing α ≤ b̄ transitions. The condition 1. of

Lemma 3.2.11 follows from the fact that ei
(b)g ↓ α if and only if ei ↓ α.

Similarly, ei
(b)g α|p−−→ ei

(b)g if and only if ei
α|p−−→ ✓ for i = 1,2. Finally, if

ei
α|p−−→ e′i for i = 1,2 and e′1 ≡0 e′2, then e′1(e1

(b)g)≡0 e′2(e2
(b)g) and ei

(b)g α|p−−→
e′i(ei

(b)g) for i = 1,2.

• Let g≡0 eg+b f and assume for an induction hypothesis that (g,eg+b f) satisfies

1.-3. in Lemma 3.2.11. Then g ↓ α if and only if either α ≤ b and e ↓ α or α ≤ b̄

and f ↓ α. Since the latter crashes are the same as those of e(b) f ↓ α, we have

verified 1. in Lemma 3.2.11.

We also know that g α|p−−→✓if and only if α ≤ b̄ and f α|p−−→✓. The latter successful

termination conditions are those of e(b) f α|p−−→✓.

124 Chapter 3. Guarded Kleene Algebra with Tests

Lastly, by the induction hypothesis, g α|p−−→ g′ if and only if one of the following

occurs:

– α ≤ b and e α|p−−→ e′. This is equivalent to e(b) f α|p−−→ e′(e(b) f). On the other

hand, e′g≡0 e′(e(b) f), and by the induction hypothesis g′ ≡0 e′g.

– α ≤ b and e α|p−−→ ✓. This means that e(b) f α|p−−→ e(b) f . By the induction

hypothesis, g′ ≡0 e(b) f ≡0 g.

– α ≤ b̄ and f α|p−−→ f ′. In this case, by the induction hypothesis, g′ ≡0 f ′.

We have shown that g α|p−−→ g′ and e(b) f α|p−−→ e′ implies g′ ≡0 e′. This establishes

3. in Lemma 3.2.11.

Now we verify that ≡ is sound with respect to language equivalence. Again, we

show that e1 ≡ e2 implies L(e1) = L(e2) by induction on the proof of e1 = e2 from

the rules in Figure 3.5. We have already seen that if e1 ≡0 e2 implies e1↔ e2, so by

Lemma 3.2.13 we know that e1 ≡0 e2 implies L(e1) = L(e2). This handles most of

the base case. Reflexivity, symmetry, and transitivity are handled by the fact that

language equivalence is the kernel of L. This leaves us with L(e0) = L(0), which can

be seen from Lemma 3.2.10:

L(e0) = L(e) ·L(0) = L(e) · /0 = /0 = L(0)

In the inductive step, we need to consider the transitivity, congruence, and Horn

rules. Congruence is a consequence of Lemma 3.2.10. Transitivity follows from

the fact that language equivalence is the kernel of L. Soundness of the rule g =

eg+b f =⇒ g = e(b) f follows from Lemma 3.2.10 and the fact that for any languages

U,L,W ⊆ (At ·Σ)+ (i.e., not containing the empty word),

L =UL∪W =⇒ L =U∗W (♡)

Now, if L(g) = L(eg+b f), then because L(eg+b f) = bL(e) · L(g)∪ b̄L(f), L(g) =

(bL(e))∗ · b̄L(f) = L(e(b) f) by (♡).

The main results of the chapter

I consider the next two results, which are jointly converse to Theorem 3.2.17, to

be the main theorems of this chapter. They state that the axioms in Figure 3.5 are

3.3. Completeness for Skip-free Bisimulation GKAT 125

complete for bisimilarity and language equivalence respectively—that they describe a

complete set of program transformations for skip-free GKAT.

Theorem 3.2.18 (Completeness I). Let e1,e2 ∈ GExpsf . If e1↔ e2, then e1 ≡0 e2.

Theorem 3.2.19 (Completeness II). Let e1,e2 ∈GExpsf . If L(e1) = L(e2), then e1 ≡ e2.

We prove Theorem 3.2.18 in Section 3.3 by drawing a formal analogy between

skip-free GKAT and the one-free regular expressions modulo bisimilarity from Chap-

ter 2. We delay the proof of Theorem 3.2.19 to Section 3.4, which uses a technique

similar to the pruning method of Section 3.1.6.

3.3 Completeness for Skip-free Bisimulation GKAT

This section is dedicated to the proof of our first completeness result, Theorem 3.2.18,

which says that the axioms of Figure 3.5 (excluding (R0)) are complete with respect to

bisimilarity in skip-free GKAT. Our proof strategy is a reduction to the completeness

theorem for one-free regular expressions modulo bisimilarity (Theorem 2.4.13).

The key objects of interest in the reduction are a pair of translations: One

translation turns skip-free GKAT expressions into one-free regular expressions and

maintains bisimilarity, and the other translation turns (certain) one-free regular

expressions into skip-free GKAT expressions and maintains provable equivalence.

We begin with a transformation between automata and labelled transition

systems that preserves and reflects bisimilarity. We then introduce the syntactic

translations and present the completeness proof.

3.3.1 From skip-free automata to labelled transition systems

Recall that a prechart is an L-coalgebra, where LX = Pω(Act× (✓+X)) and Act is a

fixed set of action symbols. In the reduction from skip-free GKAT to one-free regular

expressions modulo bisimilarity, we fix the set of action symbols Act = At ·Σ, pairs

of atomic tests and primitive programs Σ. With this set of action symbols, we can

easily transform a skip-free automaton into a prechart (Definition 2.2.4), essentially

by turning each α|p−−→ transition into a α p−→ transition.

Definition 3.3.1. Given a set X , we define

grphX : HX → LX grphX(θ) = {(α p,x) | θ(α) = (p,x)}

126 Chapter 3. Guarded Kleene Algebra with Tests

Each grphX is injective and the definition of grphX is natural in X . As its name

suggests, grphX(θ) is essentially the graph of θ when viewed as a partial function

from At to Σ× (✓+X). By Lemma 2.4.8, this implies that the transformation grph∗

of skip-free automata into precharts preserves bisimilarity.

As in Lemma 2.4.8, the natural transformation grph defines a functor. Given

a skip-free automaton (X ,δX) and a homomorphism h : (X ,δX)→ (Y,δY) between

skip-free automata, we define

grph∗ : Coalg(H)→ Coalg(L)

grph∗(X ,δX) = (X ,grphX ◦δX) grph∗(h) = h

where L is the coalgebraic signature of precharts.

Leading up to the proof of Theorem 3.2.18, we also need that grph∗ reflects

bisimilarity. In particular, we are going to undo the effect of grph∗ on skip-free

automata with a transformation that takes every prechart of the form grph∗(X ,δX) to

its underlying skip-free automaton (X ,δX).

The precharts that can be written in the form grph∗(X ,δX) for some skip-free

automaton (X ,δX) are precisely those that are deterministic in a particular sense. Call

a set U ∈ P(At ·Σ× (✓+X)) graph-like if whenever (α p,x) ∈U and (αq,y) ∈U , then

p = q and x = y. Graph-like sets are in one-to-one correspondence with the graphs

of partial functions of the form At ⇀ Σ× (✓+X). A prechart (S,τ) is deterministic if

τ(x) is graph-like for every x ∈ S.

Lemma 3.3.2. A prechart (S,τ) is deterministic if and only if (S,τ) = grph∗(X ,δX) for

some skip-free automaton (X ,δX).

Proof. For any set X , let LdetX = {U ∈P(At ·Σ× (✓+X)) |U is graph-like} and define

funcX : LdetX → (⊥+Σ× (✓+X))At by

funcX(U)(α) =

(p,x) (α p,x) ∈U

⊥ otherwise
(3.12)

This defines a natural transformation func : Ldet⇒ H.

Now let (S,τ) be a deterministic prechart. Then func∗(S,τ) = (S, funcS ◦ τ) is a

skip-free automaton such that grph∗func∗(S,τ) = (S,τ), because grphS ◦ funcS = idLdet(S).

3.3. Completeness for Skip-free Bisimulation GKAT 127

Conversely, if (S,τ) = grph∗(S,δS) and x ∈ S, then τ(x) = grphS ◦ δS(x). This implies

τ(x) is graph-like, so (S,τ) is deterministic.

Using grph∗ and func∗, (3.12), we can prove the following.

Lemma 3.3.3. Let x,y ∈ X , and (X ,δX) be a skip-free automaton. Then x↔ y in (X ,δX)

if and only if x↔ y in grph∗(X ,δX).

Proof. The forward direction is Lemma 2.4.8 item 2. For the converse, we first

observe that if (R,δR) is a bisimulation on grph∗(X ,δX), then (R,δR) is deterministic.

Indeed, if (α p,(x′,y′)),(αq,(x′′,y′′)) ∈ δR(x,y), then (α p,x′),(αq,x′′) ∈ δX(x). Since

grph∗(X ,δX) is deterministic, p = q and x′ = x′′. Similarly, y′ = y′′. Applying func∗ to

(R,δR), we obtain a bisimulation (R, funcR ◦δR) on (X ,δX) containing the same pairs.

It follows that if x↔ y in grph∗(X ,δX), then x↔ y in (X ,δX).

3.3.2 Translating Syntax

After fixing Act = At ·Σ, the set StExp of one-free regular expressions is given by

StExp ∋ r1,r2 ::= 0 | α p ∈ At ·Σ | r1 + r2 | r1r2 | r1 ∗ r2

Recall that we say r1 and r2 are provably equivalent and write r1 ≡∗ r2 if 1fMil ⊢ r1 = r2,

where 1fMil is the theory in Definition 2.2.14.

We can mimic the transformation of skip-free automata into deterministic la-

belled transition systems and vice-versa by a pair of syntactic translations going back

and forth between skip-free GKAT expressions and certain one-free star expressions.

Similar to how only some labelled transition systems can be turned into skip-free

automata, only some one-free star expressions have corresponding skip-free GKAT

expressions, what we also call the deterministic ones.

The definition of deterministic expressions requires the following notation.

Definition 3.3.4. Given a test b ∈ BExp, we define b · r inductively on r ∈ StExp by

b ·0 = 0

b ·α p =

α p α ≤ b

0 α ≤ b̄

b · (r1 + r2) = b · r1 +b · r2

b · (r1r2) = (b · r1)r2

b · (r1 ∗ r2) = (b · r1)(r1 ∗ r2)+b · r2

128 Chapter 3. Guarded Kleene Algebra with Tests

for any α p ∈ At ·Σ and r1,r2 ∈ StExp.

Definition 3.3.5. The set of deterministic one-free star expressions is the smallest

subset Det ⊆ StExp such that

• 0 ∈ Det,

• α p ∈ Det for any α ∈ At and p ∈ Σ,

• if r1,r2 ∈ Det, then r1r2 ∈ Det, and

• if r1,r2 ∈ Det, b ∈ BExp, and r1 ≡∗ b · r1 and r2 ≡∗ b̄ · r2, then r1 + r2,r1 ∗ r2 ∈ Det.

In particular, if r1,r2 ∈ Det and b ∈ BExp, then b · r1 + b̄ · r2,(b · r1)∗ (b̄ · r2) ∈ Det.

From GExpsf to Det

We now present the translations of skip-free expressions to deterministic one-free

star expressions.

Definition 3.3.6. We define the translation function gtr : GExpsf → Det by

gtr(0) = 0 gtr(p) = ∑
α∈At

ap gtr(e1 +b e2) = b ·gtr(e1)+ b̄ ·gtr(e2)

gtr(e1 · e2) = gtr(e1)gtr(e2) gtr(e1
(b)e2) = (b · e1)∗ (b̄ · e2)

for any b ∈ BExp, p ∈ Σ, e1,e2 ∈ GExp.

Remark 3.3.7. In Definition 3.3.6, we make use of a generalized sum ∑α∈At. Techni-

cally, this requires we fix an enumeration of At ahead of time, say At = {α1, . . . ,αn}, at

which point we can define ∑α∈At ra = rα1 + · · ·+ rαn . Of course, + is commutative and

associative up to provable equivalence of regular expressions ≡∗ (see Section 2.1),

so the actual ordering of this sum does not matter as far as equivalence is concerned.

An analogue of this generalized sum is also used for skip-free GKAT expressions,

which we inductively define by

∑
α≤0

α · eα = 0 ∑
α≤b

α · eα = eβ +β ∑
α≤b∧β̄

α · eα

such that β ≤ b ∈ BExp for some β ∈ At, and given an eα ∈ GExpsf for each α ∈ At.

This also technically requires that we enumerate At, but by (G2) and (G3), any two

choices in enumeration are ≡0-equivalent.

3.3. Completeness for Skip-free Bisimulation GKAT 129

The most important feature of this translation is that it preserves bisimilarity.

Lemma 3.3.8. The graph of the translation function gtr is a bisimulation of labelled

transition systems between grph∗(GExpsf ,δsf) and (StExp, ℓ). Consequently, if e1↔ e2

in grph∗(GExpsf ,δsf), then gtr(e1)↔ gtr(e2) in (StExp, ℓ).

Proof. By Lemma 2.2.12, it suffices to show that gtr : grph∗(GExpsf ,δ)→ (StExp, ℓ) is

an L-coalgebra homomorphism. We show by induction on e ∈ GExpsf that

ℓ(gtr(e)) = L(gtr)◦grph◦δsf(e)

Note that the set on the right-hand side is computed

L(gtr)◦grph(θ) = {(α p,✓) | θ(α) = (p,✓)}

∪{(α p,gtr(g)) | θ(α) = (p,g) ∈ Σ×GExpsf}
(3.13)

for θ ∈ H(GExpsf). We also use the following identity, derived inductively on r.

ℓ(b · r) = {(α p,ξ) | (α p,ξ) ∈ ℓ(r) and α ≤ b} (3.14)

For the base case, we consider e = 0 and e = p ∈ Σ. We have ℓ(gtr(0)) = ℓ(0) = /0 on

the one hand, and on the other, δsf(0) = λα.⊥. Hence, L(gtr)◦grph◦δsf(0) = /0 as in

(3.13). For e = p, we have ℓ(gtr(p)) = {(α p,✓) | α ∈ At} on the one hand, and on

the other L(gtr) ◦ grph ◦ δsf(p) = {(α p,✓) | α ∈ At} on the other by (3.13). For the

inductive step, assume ℓ(gtr(ei)) = L(gtr)◦grph◦δsf(ei) for i ∈ {1,2}. We have

ℓ(gtr(e1 +b e2)) = ℓ(b ·gtr(e1)+ b̄ ·gtr(e2))

= ℓ(b ·gtr(e1))∪ ℓ(b̄ ·gtr(e2))

= {(α p,ξ) ∈ ℓ(gtr(e1)) | α ≤ b}

∪{(α p,ξ) ∈ ℓ(gtr(e2)) | α ≤ b̄} (3.14)

= {(α p,ξ) ∈ L(gtr)◦grph◦δsf(e1) | α ≤ b}

∪{(α p,ξ) ∈ L(gtr)◦grph◦δsf(e2) | α ≤ b̄} (ind. hyp.)

= {(α p,✓) | (α p,✓) ∈ grph◦δsf(e1) and α ≤ b}

∪{(α p,gtr(g)) | (α p,g) ∈ grph◦δsf(e1) and α ≤ b}

130 Chapter 3. Guarded Kleene Algebra with Tests

∪{(α p,✓) | (α p,✓) ∈ grph◦δsf(e2) and α ≤ b̄}

∪{(α p,gtr(g)) | (α p,g) ∈ grph◦δsf(e1) and α ≤ b̄}

= {(α p,✓) | δsf(e1)(α) = (p,✓) and α ≤ b}

∪{(α p,gtr(g)) | δsf(e1)(α) = (p,g) and α ≤ b}

∪{(α p,✓) | δsf(e2)(α) = (p,✓) and α ≤ b̄}

∪{(α p,gtr(g)) | δsf(e2)(α) = (p,g) and α ≤ b̄}

= {(α p,✓) | δsf(e1 +b e2)(α) = (p,✓)}

∪{(α p,gtr(g)) | δsf(e1 +b e2)(α) = (p,g)}

= L(gtr)◦grph◦δsf(e1 +b e2) (3.13)

ℓ(gtr(e1e2)) = ℓ(gtr(e1)gtr(e2))

= {(α p,gtr(e2)) | (α p,✓) ∈ ℓ(gtr(e1))}

∪{(α p,s gtr(e2)) | (α p,s) ∈ ℓ(gtr(e1))}

= {(α p,gtr(e2)) | (α p,✓) ∈ grph◦δsf(e1)}

∪{(α p,gtr(g)gtr(e2)) | (α p,g) ∈ grph◦δsf(e1)} (ind. hyp.)

= {(α p,gtr(e2)) | (α p,✓) ∈ grph◦δsf(e1)}

∪{(α p,gtr(ge2)) | (α p,g) ∈ grph◦δsf(e1)}

= {(α p,gtr(e2)) | δsf(e1)(α) = (p,✓)}

∪{(α p,gtr(ge2)) | δsf(e1)(α) = (p,g)}

= L(gtr)◦grph◦δsf(e1e2) (3.13)

Finally, in the loop case, let e = e1
(b)e2 and compute

ℓ(gtr(e)) = ℓ((b ·gtr(e1))∗ (b̄ ·gtr(e2)))

= {(α p,gtr(e)) | (α p,✓) ∈ ℓ(gtr(e1)) and α ≤ b}

∪{(α p,s gtr(e)) | (α p,s) ∈ ℓ(gtr(e1)) and α ≤ b}

∪{(α p,s) | (α p,s) ∈ ℓ(gtr(e2)) and α ≤ b̄}

∪{(α p,✓) | (α p,✓) ∈ ℓ(gtr(e2)) and α ≤ b̄}

= {(α p,gtr(e)) | (α p,✓) ∈ grph◦δsf(e1) and α ≤ b}

∪{(α p,gtr(g) gtr(e)) | (α p,g) ∈ grph◦δsf(e1) and α ≤ b}

3.3. Completeness for Skip-free Bisimulation GKAT 131

∪{(α p,gtr(g)) | (α p,g) ∈ grph◦δsf(e2) and α ≤ b̄}

∪{(α p,✓) | (α p,✓) ∈ grph◦δsf(e2) and α ≤ b̄} (ind. hyp.)

= {(α p,gtr(e)) | δsf(e1)(α) = (p,✓) and α ≤ b}

∪{(α p,gtr(ge)) | δsf(e1)(α) = (p,g) and α ≤ b}

∪{(α p,gtr(g)) | δsf(e2)(α) = (p,g) and α ≤ b̄}

∪{(α p,✓) | δsf(e2)(α) = (p,✓) and α ≤ b̄}

= L(gtr)◦grph◦δsf(e) (3.13)

From Det to GExpsf

We also define a back translation function rtg : Det→ GExpsf by induction on its

argument. Looking at Definition 3.3.5, one might be tempted to write

rtg(b · r1 + b̄ · r2) = rtg(r1)+b rtg(r2)

but it is possible for there to be distinct b,c ∈ BExp such that b · r1 + b̄ · r2 = c · r1 + c̄ · r2

(i.e., they are the same expression). This means there is a choice to be made in the

translation of b ·r1+ b̄ ·r2. For example, given p,q∈ Σ and α1,α2,α3 ∈ At, if b = α1∨α2

and c = α1, then b ·α1 p+ b̄ ·α3q = c ·α1 p+ c̄ ·α3q. As it turns out, there is a canonical

translation of terms of the form b · r1 + b̄ · r2.

Definition 3.3.9. Write r1 ⊥b r2 and say that r1,r2 ∈ StExp are separated by b ∈ BExp

if r1 ≡∗ b · r1 and r2 ≡∗ b̄ · r2. If such a b exists we say that r1 and r2 are separated and

write r1 ⊥ r2.

Another way to define Det is to say that Det is the smallest subset of StExp

containing 0 and At ·Σ that is closed under sequential composition and closed under

unions and stars of separated one-free star expressions.

Suppose r1 and r2 are separated by both b and c. Then one can prove that

(b∨c) ·r1 ≡∗ b ·r1+c ·r1 ≡∗ r1 and (b∨ c) ·r2 = (b̄∧ c̄) ·r2 ≡∗ b̄ ·(c̄ ·r2)≡∗ r2, so r1 and r2

are separated by b∨ c as well. Since there are only finitely many Boolean expressions

up to equivalence, there is a maximal (weakest) test b(r1,r2) ∈ BExp such that r1

and r2 are separated by b(r1,r2). This allows us to define a back-translation from

132 Chapter 3. Guarded Kleene Algebra with Tests

deterministic regular expressions to skip-free GKAT expressions.

Definition 3.3.10. Given separated r1,r2 ∈ RExp, write b(r1,r2) for the maximal test

separating r1 from r2. The back translation rtg : Det→ GExpsf is defined by

rtg(0) = 0 rtg(α p) = p+α 0 rtg(r1 + r2) = rtg(r1)+b(r1,r2) rtg(r2)

rtg(r1r2) = rtg(r1) · rtg(r2) rtg(r1 ∗ r2) = rtg(r1)
(b(r1,r2))rtg(r2)

for any r1,r2 ∈ StExp. In the union and star cases, r1 and r2 are separated by definition

of Det, so that b(r1,r2) is well-defined.

To define the back-translation rtg, we had to choose a separating test in the trans-

lations of r1 + r2 and r1 ∗ r2 (we chose the maximal separating test). A consequence

of the next lemma is that any other choice in separating test would have produced

provably equivalent skip-free expressions.

Lemma 3.3.11. Let b be any test. If r ⊥b s, then rtg(r + s) ≡0 rtg(r)+b rtg(s) and

rtg(r ∗ s)≡0 rtg(r)(b)rtg(s).

To prove Lemma 3.3.11, we need the following intermediate property.

Lemma 3.3.12. If r ≡∗ b · r, then rtg(r)≡0 rtg(r)+b 0.

Proof. By induction on r ∈ Det.

• In the first base case, r = 0. Of course, b · 0 = 0 for any b ∈ BExp. By (G1),

rtg(r)+b 0 = 0+b 0≡0 0 = rtg(0).

• For the second base case, consider α p for some α ∈ At and p ∈ Σ. If α ≤ b̄, then

b ·α p = 0 ̸≡∗ α p. Otherwise, α p≡∗ b ·α p and

rtg(α p)+b 0 = (p+α 0)+b 0

≡0 p+α (0+b 0) (G3’, BA)

≡0 p+α 0 (G1)

= rtg(α p)

• For the first inductive case, suppose r1 ⊥d r2 and b · (r1 + r2)≡∗ r1 + r2. Then

(b∧d) · (r1 + r2)≡∗ b · (d · r1 +d · r2)≡∗ b · (d · r1 +0)≡∗ b · (d · r1)≡∗ b · r1 ≡∗ r1

3.3. Completeness for Skip-free Bisimulation GKAT 133

and similarly r2 ≡∗ (b∧ d̄) · (r1 + r2). This implies ri ≡∗ b · ri for i ∈ {1,2}, so

rtg(r1 + r2)+b 0≡0 (rtg(r1)+b(r1,r2) rtg(r2))+b 0

≡0 (rtg(r1)+b 0)+b(r1,r2) (rtg(r2)+b 0) (BD)

≡0 rtg(r1)+b(r1,r2) rtg(r2) (ind. hyp.)

= rtg(r1 + r2)

• For the sequential composition case, if r1r2 ≡∗ b · (r1r2), then we need to argue

that r1 ≡∗ b · r1. This actually follows from Theorem 2.2.18, because

r1
α p−→✓ iff r1r2

α p−→ r2 (def. ℓ)

iff b · (r1r2)
α p−→ r2 (assm., soundness)

iff (b · r1)r2
α p−→ r2 (def. b ·−)

iff b · r1
α p−→✓ (def. ℓ)

r1
α p−→ s iff r1r2

α p−→ sr2 (def. ℓ)

iff b · (r1r2)
α p−→ sr2 (assm., soundness)

iff (b · r1)r2
α p−→ sr2 (def. b ·−)

iff b · r1
α p−→ s (def. ℓ)

These observations are behind the following derivation

r1 ≡∗ ∑
r1

α p−→✓

α p+ ∑
r1

α p−→s

α ps (Theorem 2.2.18)

≡∗ ∑
b·r1

α p−→✓

α p+ ∑
b·r1

α p−→s

α ps

≡∗ b · r1 (Theorem 2.2.18)

Hence, r1 ≡∗ b · r1. This allows us to deduce

rtg(r1r2) = rtg(r1)rtg(r2)≡0 (rtg(r1)+b 0)rtg(r2) (ind. hyp.)

≡0 rtg(r1)rtg(r2)+b 0 (G8,G6)

= rtg(r1r2)+b 0

134 Chapter 3. Guarded Kleene Algebra with Tests

• For the star case, assume b · (r1 ∗ r2)≡∗ r1 ∗ r2 for i = 1,2 and that r1 and r2 are

separated by d. Notice that this entails

r1(r1 ∗ r2)+ r2 ≡∗ r1 ∗ r2 ≡∗ b · (r1 ∗ r2)≡∗ b · (r1(r1 ∗ r2)+ r2)

It follows that b · r2 ≡∗ r2 and b · (r1(r1 ∗ r2))≡∗ r1(r1 ∗ r2), like in the sum case. It

then follows that b ·r1≡∗ r1, by the same reasoning in the sequential composition

case. The induction hypothesis tells us rtg(ri)≡0 rtg(ri)+b 0 for i ∈ {1,2}. So,

rtg(r1 ∗ r2)≡0 rtg(r1)rtg(r1 ∗ r2)+b(r1,r2) rtg(r2) (FP1)

≡0 (rtg(r1)+b 0)rtg(r1 ∗ r2)+b(r1,r2) (rtg(r2)+b 0) (ind. hyp.)

≡0 (rtg(r1)rtg(r1 ∗ r2)+b 0)+b(r1,r2) (rtg(r2)+b 0) (G8,G6)

≡0 (rtg(r1)rtg(r1 ∗ r2)+b(r1,r2) rtg(r2))+b 0 (BD)

≡0 rtg(r1 ∗ r2)+b 0 (FP1)

We are now ready to prove Lemma 3.3.11.

Proof of Lemma 3.3.11. Let r ⊥b s and set c = b(r,s), the maximal test separating r

from s. The key insight here is that b≤ c. With this observation in hand,

rtg(r+ s) = rtg(r)+c rtg(s)

≡0 (rtg(r)+b 0)+c rtg(s) (Lemma 3.3.12)

≡0 rtg(r)+b (0+c rtg(s)) (G3’, BA)

≡0 rtg(r)+b rtg(s) (Lemma 3.3.12)

rtg(r ∗ s) = rtg(r)(c)rtg(s)

≡0 rtg(r)(rtg(r)(c)rtg(s))+c rtg(s) (FP1)

≡0 (rtg(r)+b 0)(rtg(r)(c)rtg(s))+c rtg(s) (Lemma 3.3.12)

≡0 (rtg(r)(rtg(r)(c)rtg(s))+b 0)+c rtg(s) (G8,G6)

≡0 rtg(r)(rtg(r)(c)rtg(s))+b (0+c rtg(s)) (G3’)

≡0 rtg(r)(rtg(r)(c)rtg(s))+b rtg(s) (Lemma 3.3.12)

= rtg(r)rtg(r ∗ s)+b rtg(s)

3.3. Completeness for Skip-free Bisimulation GKAT 135

≡0 rtg(r)(b)rtg(s) (RSP)

The most important property of rtg for the completeness proof is that it preserves

provable equivalence. This is the content of the following theorem.

Theorem 3.3.13. Let r1,r2 ∈ Det. If r1 ≡∗ r2, then rtg(r1)≡0 rtg(r2).

An intuitive approach to proving Theorem 3.3.13 proceeds by induction on the

derivation of 1fMil ⊢ r = s. However, if one-free regular expressions appear in the

derivation of 1fMil ⊢ r = s that are not deterministic, then the induction hypothesis

cannot be applied: The translation map rtg is only defined on Det. In other words, the

induction hypothesis must be strengthened: Our proof by induction on derivations can

only go through if whenever r,s ∈ Det and r ≡∗ s, there is a derivation of 1fMil ⊢ r = s

in which only deterministic one-free regular expressions appear. Such a derivation is

what we call a deterministic proof.

Definition 3.3.14. Given r,s ∈ Det, we call a proof of 1fMil ⊢ r = s a deterministic

proof if every expression that appears in the proof is a deterministic one-free regular

expression (i.e., is in Det). We write 1fMil ⊢det r = s if there is a deterministic proof of

1fMil ⊢ r = s and say that r is deterministic provably equivalent to s.

As it turns out, for deterministic one-free regular expressions r,s ∈ Det, r ≡∗ s if

and only if there is a deterministic proof of 1fMil ⊢ r = s.

Theorem 3.3.15. For any r,s ∈ Det, if 1fMil ⊢ r = s, then 1fMil ⊢det r = s.

Our next goal is to prove this theorem.

The proof of Theorem 3.3.15

In order to show that every provable equivalence between deterministic one-free

regular expressions is obtainable from a deterministic proof, we need to take a detour

through the completeness proof of Grabmayer and Fokkink [GF20], outlined in

Chapter 2, for regular expressions modulo bisimilarity.

Grabmayer and Fokkink’s completeness proof revolves around a notion of solu-

tion to an operational model that is similar to the one we used in the completeness

proof for GKAT in Section 3.1. We adapt this notion to deterministic proofs.

136 Chapter 3. Guarded Kleene Algebra with Tests

Definition 3.3.16. Consider a deterministic prechart (X ,τ). Let ϕ : X → Det. We say

that ϕ is a deterministic solution if for any x ∈ X ,

1fMil ⊢det ϕ(x) = ∑
x

α p−→✓

α p+ ∑
x

α p−→y

α p ϕ(y)

Two deterministic solutions ϕ1 and ϕ2 are deterministic provably equivalent if for any

x ∈ X , 1fMil ⊢det ϕ1(x) = ϕ2(x).

In Section 2.4, we saw a sufficient condition for guaranteeing that a prechart

admits a unique solution up to (not necessarily deterministic) provable equivalence.

The condition is the existence of a so-called layering witness, an auxiliary transition

system with edges labelled either by→e→e, for loop entry, or→b, for body (see Defini-

tion 2.4.2 for details). Furthermore, the unique solution to a well-layered prechart is

given by a formula, which we recall next.

Definition 3.3.17. Define the two quantities below for any x ∈ X

|x|en = max{n | (∃x1, . . . ,xn) x ↷ x1 ↷ · · ·↷ xn}

|x|bo = max{n | (∃x1, . . . ,xn) x→b x1→b · · · →b xn}

These are finite because in a (locally) finite layering witness (X ,τ•), (X ,↷) (see

pg. 57), and (X ,→b) contain no infinite paths.

Let x,z ∈ X , a =
∨
{α | x α p−→e}, b =

∨
{α | x α p−→ x}, and c =

∨
{α | x α p−→✓}. The

canonical solution ϕX to (X ,τ) (given the layering witness (X ,τ•)) is defined recur-

sively on |x|bo as follows:

ϕX(x) =
(

∑
x

α p−→ex

α p+b
∑

x
α p−→ey
x ̸=y

α p tX(y,x)
)
∗a
(

∑
x

α p−→✓

α p+c
∑

x
α p−→by
x ̸=y

α p ϕX(y)
)

where we write r+b s and r ∗b s to denote the terms r+ s and r ∗ s respectively, as well

as the statement r ⊥b s. Above, the expression tX(y,x) is defined for every pair (y,x)

such that x ↷ y by recursion on (|x|en, |y|bo) in the lexicographical ordering of N×N

3.3. Completeness for Skip-free Bisimulation GKAT 137

as follows: where a′ =
∨
{α | y α p−→e}, b′ =

∨
{α | y α p−→ y}, and c′ =

∨
{α | y α p−→b x},

tX(y,x) =
(

∑
y

α p−→ey

α p+b′
∑

y
α p−→ez
z̸=y

α p tX(z,y)
)
∗a′
(

∑
y

α p−→bx

α p+c′
∑

y
α p−→bz
z̸=x

α p tX(z,x)
)

Remark 3.3.18. The lexicographical ordering of N×N is the least order such that

(n,m) ≤ (n,k) if m ≤ k and (n,m) ≤ (l,k) if n ≤ l for any n,m, l,k ∈ N. This defines a

well-ordering of N×N.

We are specifically interested in solving deterministic precharts. The following

terminology will be useful in proofs.

Definition 3.3.19. A state x in a prechart (X ,τ) is operationally deterministic if τ(x)

is graph-like, i.e., for any ξ ,ξ ′ ∈✓+X , x α p−→ ξ and x αq−→ ξ ′ implies p = q and ξ = ξ ′.

Thus, a prechart is deterministic if and only if every of its states is operationally

deterministic. Determinism is preserved by homomorphisms.

Lemma 3.3.20. If x is an operationally deterministic state of the prechart (X ,τX) and

h : (X ,τX)→ (Y,τY) is a homomorphism, then h(x) is operationally deterministic.

Proof. There are three cases to consider.

1. Suppose h(x) α p−→✓ and h(x) αq−→✓. Then (α p,✓),(αq,✓)∈ τX(x) because h is a

homomorphism. It follows that p = q, because x is operationally deterministic.

2. If h(x) α p−→ y1 and h(x) αq−→ y2 for some y,y′ ∈ Y , then there are x1,x2 ∈ X such

that h(x1) = y1, h(x2) = y2, x α p−→ x1, and x αq−→ x2. Since x is operationally

deterministic, p = q and x1 = x2. Hence, h(x1) = h(x2).

3. If h(x) α p−→✓ and h(x) αq−→ y for some y ∈Y , then x α p−→✓ and x αq−→ x′ for some x′

such that h(x′) = y. This is not possible because x is operationally deterministic,

which would then require p = q and ✓= x′, despite X ∩✓= /0.

We are now ready to describe the structure of the proof of Theorem 3.3.15.

The proof requires the following four facts about deterministic regular expressions,

deterministic well-layered precharts, and their deterministic solutions.

Fact 1 (Lemma 3.3.21) Det is a deterministic subcoalgebra of (StExp, ℓ).

138 Chapter 3. Guarded Kleene Algebra with Tests

Fact 2 (Lemma 3.3.23) For any r ∈ Det, the inclusion map in⟨r⟩ : ⟨r⟩ → StExp is a

deterministic solution. This is equivalent to saying that

1fMil ⊢det r = ∑
r

α p−→✓

α p+ ∑
r

α p−→s

α p s

Fact 3 (Theorem 3.3.26) Fix a layering witness (X ,τ•) for a deterministic prechart

(X ,τ) (Definition 2.4.2).

(a) ϕX is a deterministic solution to (X ,τ). That is, for any x ∈ X ,

1fMil ⊢det ϕX(x) = ∑
x

α p−→✓

α p+ ∑
x

α p−→y

α p ϕX(y)

(b) For any deterministic solution ψ to (X ,τ) and for all x ∈ X ,

1fMil ⊢det ϕX(x) = ψ(x)

Fact 4 (Lemma 3.3.27) Let h : (X ,τX)→ (Y,τY) be a homomorphism between deter-

ministic precharts and let ϕ : Y →Det be a deterministic solution to (Y,τ). Then

ϕ ◦h is a deterministic solution to (X ,τX).

We sketch the proof of Theorem 3.3.15 below, showing how these four facts collec-

tively imply Theorem 3.3.15.

Proof of Theorem 3.3.15. Suppose r,s ∈ Det. By Lemma 3.3.21 (Fact 1), ⟨r⟩ and ⟨s⟩

are deterministic well-layered precharts, because they are subcoalegbras of (StExp, ℓ)

contained in Det and every subcoalgebra of a well-layered prechart is well-layered.

Now, if 1fMil ⊢ r = s, then r↔ s by soundness. This means there is a minimal

prechart (X ,τ) and two quotient homomorphisms ⟨r⟩ h−→ (X ,τ)
k←− ⟨s⟩ such that h(r) =

k(s). Since well-layeredness and determinism are preserved by homomorphisms

(Theorem 2.4.12 and Lemma 3.3.20), (X ,τ) is a deterministic well-layered prechart.

It follows from Theorem 3.3.26 (Fact 3) that (X ,τ) has a deterministic solution ϕX .

By Lemma 3.3.27 (Fact 4), ϕX ◦ h and ϕX ◦ k are deterministic solutions to ⟨r⟩

and ⟨s⟩ respectively. Lemmas 3.3.21 and 3.3.23 (Facts 1 and 2) tell us that in⟨r⟩

and in⟨s⟩ are also deterministic solutions to ⟨r⟩ and ⟨s⟩ respectively. Therefore, by

3.3. Completeness for Skip-free Bisimulation GKAT 139

Theorem 3.3.26 (Fact 3),

1fMil ⊢det r = in⟨r⟩(r) = ϕX ◦h(r)

1fMil ⊢det s = in⟨s⟩(s) = ϕX ◦ k(s)

Since h(r) = k(s), we see from the derivations above that 1fMil ⊢det r = s.

The proof of Theorem 3.3.15 required four facts, which we record as Lem-

mas 3.3.21, 3.3.23 and 3.3.27 and Theorem 3.3.26. We prove each of these individ-

ually, although two of them require further lemmas, and one a further definition.

The dependency graph of the results that follow can be drawn like so: Where A→ B

denotes that B is used in the proof of A, we have

Theorem 3.3.15

Lemma 3.3.21 Lemma 3.3.23 Theorem 3.3.26 Lemma 3.3.27

Lemma 3.3.22 Lemma 3.3.25

Theorem 2.4.12Lemma 3.3.20

Fact 1 Fact 2 Fact 3 Fact 4

Let us start by proving Fact 1.

Lemma 3.3.21 (Fact 1). Det is a deterministic subcoalgebra of (StExp, ℓ).

Proof. We show by induction on r ∈ Det that r is operationally deterministic and that

if r α p−→ s, then s ∈ Det. There are two base cases.

• The deterministic expression 0 has no outgoing transitions at all, and so the

two properties we are trying to show vacuously hold.

• The expression α p has one outgoing transition, α p α p−→ ✓, which does not

land on another state. Every state with at most one outgoing transition is

operationally deterministic, so we are done here.

For the inductive step, suppose r1,r2 ∈ Det, r1,r2 are both operationally deterministic,

and ri
α p−→ s implies that s ∈ Det for either i = 1,2.

• Suppose r1 ⊥b r2 for some b ∈ BExp. If r1 + r2
α p−→ ξ and r1 + r2

αq−→ ξ ′ for α ≤ b,

then r1
α p−→ ξ and r1

αq−→ ξ ′, because b̄ · r2 ↔ 0. By the induction hypothesis,

140 Chapter 3. Guarded Kleene Algebra with Tests

p = q and ξ = ξ ′. Also by the induction hypothesis, if ξ ∈ StExp, then ξ ∈ Det.

Similarly for α ≤ b̄ and r2.

• Now suppose we have r1r2
α p−→ s and r1r2

αq−→ s′ (it is not possible for r1r2→✓).

Then r1
α p−→ and r1

αq−→ are two outgoing transitions from r1 (we leave the

targets of the transitions out for now). Because r1 is operationally deterministic,

p = q. Now, if r1
α p−→✓, then r1

α p−→ s and r1
α p−→ s′. By operational determinism,

s = s′, and by the induction hypothesis, s ∈ Det. If r1
α p−→ t, then s = tr2 = s′.

Furthermore, by the induction hypothesis, t ∈ Det, so tr2 ∈ Det as desired.

• Now suppose r1 ⊥b r2 for some b ∈ BExp. If r1 ∗ r2
α p−→ ξ and r1 ∗ r2

αq−→ ξ ′ for

some α ≤ b̄, then r2
α p−→ ξ and r2

αq−→ ξ ′, because b̄ · r1↔ 0. By the induction

hypothesis, p = q and ξ = ξ ′ ∈ ✓+Det. Now suppose α ≤ b. Then r1
α p−→ s

and r1
αq−→ s′ and ξ = s(r1 ∗ r2) and ξ ′ = s′(r1 ∗ r2). By the induction hypothesis

applied to r1, p = q and s = s′ ∈ Det. Hence, s(r1 ∗ r2) = s′(r1 ∗ r2) ∈ Det.

Now we turn our attention to Fact 2. It is important to the proof of Fact 2 that

deterministic provable equivalence is a congruence relation on deterministic one-free

regular expressions.

Lemma 3.3.22. Let r1,r2,s1,s2 ∈ Det. If 1fMil ⊢det ri = si for i = 1,2, then

1. 1fMil ⊢det r1 + r2 = s1 + s2 whenever r1 ⊥ r2 and s1 ⊥ s2

2. 1fMil ⊢det r1r2 = s1s2

3. 1fMil ⊢det r1 ∗ r2 = s1 ∗ s2 whenever r1 ⊥ r2 and s1 ⊥ s2

Proof. In each case, construct deterministic proofs of r1 = r2 and s1 = s2. Then

complete the proofs of 1fMil ⊢ r1+ r2 = s1+ s2, 1fMil ⊢ r1r2 = s1s2, and 1fMil ⊢ r1 ∗ r2 =

s1 ∗ s2 with applications of their corresponding congruence rules.

Lemma 3.3.23 (Fact 2). For any r ∈ Det, in⟨r⟩ : ⟨r⟩ → StExp is a deterministic solution.

In the proof of this lemma below, we make use of the following notation.

Definition 3.3.24. Given r,s∈ StExp, we write r+b s and r∗b s for the expressions r+s

and r ∗ s respectively, as well as the statement r ⊥b s. We refer to these superscripts as

separation markers.

In particular, if r,s ∈ Det, then r+b s and r ∗b s indicate that r+ s and r ∗ s are

deterministic expressions as well.

3.3. Completeness for Skip-free Bisimulation GKAT 141

Proof of Lemma 3.3.23. We are going to prove that

1fMil ⊢det r = ∑
r

α p−→✓

α p+ ∑
r

α p−→s

α ps

by induction on r ∈ Det. We have yet to see why this equation is between two

deterministic expressions, however: Notice that on the right-hand side of the equation

above, ∑
r

α p−→✓
α p and ∑

r
α p−→s

α ps are deterministic expressions because there is at

most one transition r α p−→ per α ∈ At by operational determinism of r. Moreover, if

b =
∨
{α | r α p−→✓}, then ∑

r
α p−→✓

α p ⊥b ∑
r

α p−→s
α ps. This shows that the right-hand

side of the equation we are about to derive is deterministic.

There are two base cases.

• Since 0 has no outgoing transitions,

1fMil ⊢ ∑
0

α p−→✓

α p+ ∑
0

α p−→s

α ps = 0+0 = 0

where the first equality is literal syntactic equality and the second is the axiom

x+ x = x. We have already seen that the first expression is deterministic. The

expression 0+0 is deterministic because 0 ∈ Det and 0⊥1 0.

• Since α p has only one outgoing transition,

1fMil ⊢ ∑

α p
βq−→✓

βq+ ∑

α p
βq−→s

βqs = α p+0 = α p

We have already seen that the first expression is deterministic. The second is

deterministic because 0,α p ∈ Det and α p⊥α 0.

For the inductive step, assume that for i = 1,2,

1fMil ⊢det ri = ∑
ri

α p−→✓

α p+ ∑
ri

α p−→s

α ps

• Let r1 ⊥c r2, and define bi =
∨
{ri

α p−→✓} for i = 1,2. Then

1fMil ⊢det r1 +
c r2

142 Chapter 3. Guarded Kleene Algebra with Tests

=
(

∑
r1

α p−→✓

α p+b1 ∑
r1

α p−→s

α ps
)
+c
(

∑
r2

α p−→✓

α p+b2 ∑
r2

α p−→s

α ps
)

(Lemma 3.3.22, ind. hyp.)

= ∑
r1

α p−→✓

α p+b1∧c
(

∑
r1

α p−→s

α ps+c
(

∑
r2

α p−→✓

α p+b2 ∑
r2

α p−→s

α ps
))

(assoc.)

= ∑
r1

α p−→✓

α p+b1∧c
((

∑
r1

α p−→s

α ps+c
∑

r2
α p−→✓

α p
)
+c∨b2 ∑

r2
α p−→s

α ps
)

(assoc.)

= ∑
r1

α p−→✓

α p+b1∧c
((

∑
r2

α p−→✓

α p+c̄
∑

r1
α p−→s

α ps
)
+c∨b2 ∑

r2
α p−→s

α ps
)

(comm., r ⊥c s iff s⊥c̄ r)

= ∑
r1

α p−→✓

α p+b1∧c
(

∑
r2

α p−→✓

α p+c̄∧b2
(

∑
r1

α p−→s

α ps+c∨b2 ∑
r2

α p−→s

α ps
))

(assoc.)

=
(

∑
r1

α p−→✓

α p+b1∧c
∑

r2
α p−→✓

α p
)
+b
(

∑
r1

α p−→s

α ps+c∨b2 ∑
r2

α p−→s

α ps
)

(assoc.,†)

= ∑
r1+r2

α p−→✓

α p+b
∑

r1+r2
α p−→s

α ps

†In the last two steps, we define b = (b1∧ c)∨ (c̄∧b2). The separation markers

in the derivation above indicate how to construct each expression that appears

as a deterministic expression. This establishes that there is a deterministic proof

of 1fMil ⊢ r1 + r2 = ∑
r1+r2

α p−→✓
α p+∑

r1+r2
α p−→s

α ps.

• In the sequential composition inductive case, we have

1fMil ⊢det r1r2 =
(

∑
r1

α p−→✓

α p+b1 ∑
r1

α p−→s

α ps
)

r2 (Lemma 3.3.22, ind. hyp.)

= ∑
r1

α p−→✓

α pr2 +
b1 ∑

r1
α p−→s

α psr2 (dist.)

= 0+0
(

∑
r1

α p−→✓

α pr2 +
b1 ∑

r1
α p−→s

α psr2

)
(¬(r1r2

α p−→✓))

= ∑
r1r2

α p−→✓

α p+0
∑

r1r2
α p−→s

α ps (rearr. summands)

• In the star inductive case, let r1 ⊥c r2 and compute

1fMil ⊢det r1 ∗ r2

3.3. Completeness for Skip-free Bisimulation GKAT 143

= r1(r1 ∗ r2)+
c r2 (FP1)

=
(

∑
r1

α p−→✓

α p+b1 ∑
r1

α p−→s

α ps
)
(r1 ∗ r2)+

c r2 (Lemma 3.3.22, ind. hyp.)

=
(

∑
r1

α p−→✓

α p(r1 ∗ r2)+
b1 ∑

r1
α p−→s

α ps(r1 ∗ r2)
)
+c r2 (dist.)

=
(

∑
r1

α p−→✓

α p(r1 ∗ r2)+
b1 ∑

r1
α p−→s

α ps(r1 ∗ r2)
)

+c
(

∑
r2

α p−→✓

α p+b2 ∑
r2

α p−→s

α ps
)

(Lemma 3.3.22, ind. hyp.)

= ∑
r2

α p−→✓

α p+c̄∧b2
(

∑
r1

α p−→✓

α p(r1 ∗ r2)

+b1∧c
(

∑
r1

α p−→s

α ps(r1 ∗ r2)+
c∧b̄1 ∑

r2
α p−→s

α ps
))

(assoc.)

= ∑
r1∗r2

α p−→✓

α p+b
∑

r1∗r2
α p−→s

α ps

where b = c̄∨b1.

Now we turn our attention to Fact 3. Fix a locally finite layering witness (X ,τ•)

for a deterministic prechart (X ,τ). Write ϕX for the canonical solution to (X ,τ) given

(X ,τ•). We need the following lemma to prove Fact 3.

Lemma 3.3.25. Let x,z ∈ X .

1. ϕX(x) and tX(x,z) are deterministic expressions.

2. If x ↷ y, then

1fMil ⊢det ϕX(y) = tX(y,x)ϕX(y)

3. If x ↷ y and ψ is any deterministic solution to (X ,τ), then

1fMil ⊢det ψ(y) = tX(y,x)ψ(y)

Proof. We begin by showing item 1, that ϕX(x) and tX(x,y) are deterministic expres-

sions for any x,z ∈ X . This can be seen by induction on |x|bo and (|x|en, |y|bo) in N and

the lexicographical ordering of N×N respectively. In the base cases, |x|bo = 0 in the

first case and |x|en = 1, |y|bo = 0 in the second. Note that |x|en = 1 means that |y|en = 0

144 Chapter 3. Guarded Kleene Algebra with Tests

in the second case.

ϕX(x) =
(

∑
x

α p−→ex

α p+b
∑

x
α p−→ey

α p tX(y,x)
)
∗a
(

∑
x

α p−→✓

α p+c 0
)

tX(y,x) =
(

∑
y

α p−→ey

α p+b′ 0
)
∗a′
(

0+c′ 0
)

These are both deterministic, as seen from the separation markers a,b,c and a′,b′,c′,

and because x is operationally deterministic.

For the inductive step, observe from the separation markers in Definition 3.3.17

that ϕX(x) and tX(y,x) are constructed from sums and stars of separated one-

free regular expressions. It therefore suffices to see that the sub-expressions

tX(z,y),ϕX(y), tX(z,x) are all deterministic. This follows from the induction hypothesis:

• Where tX(z,y) appears in tX(y,x), x ↷ y. This means that |y|en < |x|en and there-

fore (|y|en, |z|bo)< (|x|en, |y|bo) in the lexicographical ordering. By the induction

hypothesis, tX(z,y) is deterministic.

• Where ϕX(y) appears in ϕX(x), x→b y. This means that |y|bo < |x|bo. By the

induction hypothesis, ϕX(y) is deterministic.

• Where tX(z,x) appears in tX(y,x), y→b z. This means that |z|bo < |y|bo, so that

(|x|en, |z|bo) < (|x|en, |y|bo) in the lexicographical ordering. By the induction

hypothesis, tX(z,x) is deterministic.

Thus, ϕX(x) and tX(y,x) are both deterministic.

We show item 2 by induction on |y|bo. Let b =
∨
{α | y α p−→ y}, let

r = ∑
y

α p−→ey

α p+b
∑

y
α p−→ez
y ̸=z

α p tX(z,y)

and a =
∨
{α | y α p−→b x}, c =

∨
{α | (∃z) y α p−→e z}, and d =

∨
{α | y α p−→✓}. Note that

we have already seen that r is deterministic. In the base case, |y|bo = 0, tX(y,x) = r ∗0,

so we have

1fMil ⊢det (r ∗0)ϕX(x) = r(r ∗0)ϕX(x)+c 0ϕX(x) = r(r ∗0)ϕX(x)+c 0 (RSP)
= r ∗0

3.3. Completeness for Skip-free Bisimulation GKAT 145

In the inductive step, we have

1fMil ⊢det ϕX(y) = r ∗c
(

∑
y

α p−→✓

α p+d
∑

y
α p−→bz

α p ϕX(z)
)

(def)

= r ∗c
(

0+0
∑

y
α p−→bz

α p ϕX(z)
)

(¬(y→✓))

= r ∗c
(

∑
y

α p−→bz

α p ϕX(z)
)

(zero)

= r ∗c
(

∑
y

α p−→bx

α p ϕX(x)+a
∑

y
α p−→bz
z̸=x

α p ϕX(z)
)

(rearr. summands)

= r ∗c
(

∑
y

α p−→bx

α p ϕX(x)+a
∑

y
α p−→bz
z̸=x

α p tX(z,x)ϕX(x)
)

(ind. hyp., |z|bo < |y|bo)

= r ∗c
(

∑
y

α p−→bx

α p+a
∑

y
α p−→bz
z̸=x

α p tX(z,x)
)

ϕX(x) (dist.)

= tX(y,x)ϕX(x) (def. tX(y,x))

Indeed, by item 1 and as indicated by the separation markers above, each of the

expressions in this derivation is deterministic.

Finally, we prove item 3 by induction on (|x|en, |y|bo) in the lexicographical

ordering of N×N, assuming x ↷ y. In the base case, |x|en = 1 and |y|bo = 0, and we

also know |y|en = 0 since x ↷ y. Since x ↷ y, ¬(y→✓), so

1fMil ⊢det ψ(y) = 0+0
∑

y
α p−→z

α p ψ(z) = ∑
y

α p−→z

α p ψ(z) (¬(y→✓), zero)

Let c =
∨
{α | (∃z) y α p−→e z} and b =

∨
{α | y α p−→ y}. Then

1fMil ⊢det ψ(y) = ∑
y

α p−→z

α p ψ(z)

= ∑
y

α p−→ez

α p ψ(z)+c
∑

y
α p−→bz

α p ψ(z) (rearr. summands)

146 Chapter 3. Guarded Kleene Algebra with Tests

=
(

∑
y

α p−→ey

α p ψ(y)+b
∑

y
α p−→ez
y ̸=z

α p ψ(z)
)
+c

∑
y

α p−→bz

α p ψ(z)

(rearr. summands)

In the base case, the above becomes

1fMil ⊢det

(
∑

y
α p−→ey

α p ψ(y)+b 0
)
+c 0 =

(
∑

y
α p−→ey

α p ψ(y)+b 0 ψ(y)
)
+c 0

=
(

∑
y

α p−→ey

α p+b 0
)

ψ(y)+c 0

so by (RSP),

1fMil ⊢det ψ(y) = (∑
y

α p−→ey

α p+b 0)∗c 0 =
(
(∑

y
α p−→ey

α p+b 0)∗c 0
)

ψ(x) = tX(y,x)ψ(x)

In the inductive step,

1fMil ⊢det ψ(y) =
(

∑
y

α p−→ey

α p ψ(y)+b
∑

y
α p−→ez
y ̸=z

α p ψ(z)
)
+c

∑
y

α p−→bz

α p ψ(z)

=
(

∑
y

α p−→ey

α p ψ(y)+b
∑

y
α p−→ez
y ̸=z

α p tX(z,y)ψ(y)
)
+c

∑
y

α p−→bz

α p tX(z,x)ψ(x)

(ind. hyp. with |y|en < |x|en and ind. hyp with |z|bo < |y|bo)

=
(

∑
y

α p−→ey

α p+b
∑

y
α p−→ez
y ̸=z

α p tX(z,y)
)

ψ(y)+c
∑

y
α p−→bz

α p tX(z,x)ψ(x)

(dist.)

=
(

∑
y

α p−→ey

α p+b
∑

y
α p−→ez
y ̸=z

α p tX(z,y)
)
∗c
(

∑
y

α p−→bz

α p tX(z,x)ψ(x)
)

(RSP)

=
(

∑
y

α p−→ey

α p+b
∑

y
α p−→ez
y ̸=z

α p tX(z,y)
)
∗c
(

∑
y

α p−→bz

α p tX(z,x)
)

ψ(x)

(assoc.)

= tX(y,x)ψ(x)

Theorem 3.3.26 (Fact 3). The canonical solution ϕX is a deterministic solution to

3.3. Completeness for Skip-free Bisimulation GKAT 147

(X ,τ). That is, for any x ∈ X ,

1fMil ⊢det ϕX(x) = ∑
x

α p−→✓

α p+ ∑
x

α p−→y

α p ϕX(y)

Furthermore, for any deterministic solution ψ to (X ,τ) and any x ∈ X ,

1fMil ⊢det ϕX(x) = ψ(x)

Proof of Theorem 3.3.26. To see that the canonical solution to (X ,τ) is a deterministic

solution, let x,z∈ X , and b =
∨
{α | x α p−→ x}, c =

∨
{α | x α p−→e}, and d =

∨
{α | x α p−→✓}.

We derive

1fMil ⊢det ϕX(x)

=
(

∑
x

α p−→ex

α p+b
∑

x
α p−→ey
x ̸=y

α p tX(y,x)
)
∗c
(

∑
x

α p−→✓

α p+d
∑

x
α p−→by
x ̸=y

α p ϕX(y)
)

(def.)

=
(

∑
x

α p−→ex

α p+b
∑

x
α p−→ey
x ̸=y

α p tX(y,x)
)

ϕX(x)+c
(

∑
x

α p−→✓

α p+d
∑

x
α p−→by
x ̸=y

α p ϕX(y)
)

(FP1)

=
(

∑
x

α p−→ex

α p ϕX(x)+b
∑

x
α p−→ey
x ̸=y

α p tX(y,x)ϕX(x)
)

+c
(

∑
x

α p−→✓

α p+d
∑

x
α p−→by
x ̸=y

α p ϕX(y)
)

(dist.)

=
(

∑
x

α p−→ex

α p ϕX(x)+b
∑

x
α p−→ey
x ̸=y

α p ϕX(y)
)
+c
(

∑
x

α p−→✓

α p+d
∑

x
α p−→by
x ̸=y

α p ϕX(y)
)

(Lemma 3.3.25 item 2)

= ∑
x

α p−→✓

α p+d
∑

x
α p−→y

α p ϕX(y) (rearr. summands)

In the last step, we used the fact that d̄ ≥BA c≥BA b.

Now let ψ be another deterministic solution to (X ,τ). To see that 1fMil ⊢det

ψ(x) = ϕX(x) for any x ∈ X , we proceed by induction on |x|bo. The inductive step

148 Chapter 3. Guarded Kleene Algebra with Tests

proceeds as follows:

1fMil ⊢det ψ(x)

=
(

∑
x

α p−→x

α p ψ(x)+b
∑

x
α p−→ey
y̸=x

α p ψ(y)
)
+c
(

∑
x

α p−→✓

α p+d
∑

x
α p−→by

α p ψ(y)
)

(def.)

=
(

∑
x

α p−→x

α p ψ(x)+b
∑

x
α p−→ey
y ̸=x

α p tX(y,x)ψ(x)
)
+c
(

∑
x

α p−→✓

α p+d
∑

x
α p−→by

α p ψ(y)
)

(Lemma 3.3.25 item 3)

=
(

∑
x

α p−→x

α p+b
∑

x
α p−→ey
y̸=x

α p tX(y,x)
)

ψ(x)+c
(

∑
x

α p−→✓

α p+d
∑

x
α p−→by

α p ψ(y)
)

(dist.)

=
(

∑
x

α p−→x

α p+b
∑

x
α p−→ey
y̸=x

α p tX(y,x)
)
∗c
(

∑
x

α p−→✓

α p+d
∑

x
α p−→by

α p ψ(y)
)

(RSP)

=
(

∑
x

α p−→x

α p+b
∑

x
α p−→ey
y̸=x

α p tX(y,x)
)
∗c
(

∑
x

α p−→✓

α p+d
∑

x
α p−→by

α p ϕX(y)
)

(ind. hyp., |y|bo < |x|bo)

= ϕX(x)

The base case is similar, except that it skips the second to last equality above, because

∑
x

α p−→by
is an empty sum.

Finally, we prove Fact 4.

Lemma 3.3.27 (Fact 4). Let h : (X ,τX)→ (Y,τY) be a homomorphism between deter-

ministic precharts and let ψ : Y →Det be a deterministic solution to (Y,τ). Then ψ ◦h is

a deterministic solution to (X ,τX).

Proof. The key observations here are (1) x α p−→✓ iff h(x) α p−→✓, and (2) h(x) α p−→ y iff

there is an x′ ∈ X such that h(x′) = y and x α p−→ x′. Since (1) implies ∑
h(x)

α p−→✓
α p =

∑
x

α p−→✓
α p, and since (2) implies ∑

h(x)
α p−→y

α p ψ(y) = ∑
x

α p−→x′
α p ψ(h(x′)),

1fMil ⊢det ψ ◦h(x) = ∑
h(x)

α p−→✓

α p+ ∑
h(x)

α p−→y

α p ψ(y)

= ∑
x

α p−→✓

α p+ ∑
x

α p−→x′

α p ψ ◦h(x′)

3.3. Completeness for Skip-free Bisimulation GKAT 149

Where the second equality is syntax equality. It follows that ψ ◦h is a deterministic

solution to (X ,τ).

This concludes our verification of each of the four facts used in the proof of

Theorem 3.3.15.

The last few steps of the completeness proof

With Theorem 3.3.15 in hand, we are ready to establish the necessary property of rtg

used in the proof of completeness, namely Theorem 3.3.13, which says that r ≡∗ s

implies rtg(r)≡0 rtg(s) for any r,s ∈ Det.

Proof of Theorem 3.3.13. Let r,s ∈Det, and suppose r≡∗ s. Then, by Theorem 3.3.15,

1fMil ⊢det r = s. We proceed by induction on the deterministic derivation of 1fMil ⊢

r = s. In the base case, we verify the one-free star behaviour axioms directly.

(B0) Every r ∈ Det such that r + r ∈ Det satisfies r ≡∗ 0, so by (G0), rtg(r + r) =

rtg(r)+1 rtg(r)≡0 rtg(r).

(B1) The maximal test separating r from 0 is 1, so rtg(r+0) = rtg(r)+1 rtg(0)≡0 rtg(r)

by (G0).

(B2) If r⊥b s, then rtg(r+s)≡0 rtg(r)+b rtg(s)≡0 rtg(s)+b̄ rtg(r)≡0 rtg(s+r) by (G2)

and Lemma 3.3.11 (because s⊥b̄ r).

(B3) Letting r ⊥b s and (r+ s)⊥c t, we have r ⊥b∧c t and s⊥c t as well, so

rtg((r+ s)+ t)≡0 (rtg(r)+b rtg(s))+c rtg(t) (Lemma 3.3.11)

≡0 rtg(r)+b∧c (rtg(s)+c rtg(t)) (G3’)

≡0 rtg(r)+b∧c rtg(s+ t) (Lemma 3.3.11)

≡0 rtg(r+(s+ t)) (Lemma 3.3.11)

(B6) Similarly in the left zero case: By (G6),

rtg(0r) = rtg(0)gtr(r) = 0rtg(r)≡0 0 = rtg(0)

150 Chapter 3. Guarded Kleene Algebra with Tests

(B7) No further considerations in the associativity case:

rtg(r(st)) = rtg(r)rtg(st)

= rtg(r)(rtg(s)rtg(t))

≡0 (rtg(r)rtg(s))rtg(t) (G7)

= rtg((rs)t)

(B8) If r ⊥b s, then rt ⊥b st, so

rtg((r+ s)t) = rtg(r+ s)rtg(t)

≡0 (rtg(r)+b rtg(s))rtg(t) (Lemma 3.3.11)

≡0 rtg(r)rtg(t)+b rtg(s)rtg(t) (G8)

≡0 rtg(rt + st) (Lemma 3.3.11)

(FP1) Suppose r ⊥b s. Then r(r ∗ s)⊥b s as well, so

rtg(r ∗ s)≡0 rtg(r)(b)rtg(s) (Lemma 3.3.11)

≡0 rtg(r)(rtg(r)(b)rtg(s))+b rtg(s) (FP1)

≡0 rtg(r)rtg(r ∗ s)+b rtg(s) (Lemma 3.3.11)

= rtg(r(r ∗ s))+b rtg(s)

≡0 rtg(r(r ∗ s)+ s) (Lemma 3.3.11)

For the inductive step, assume that 1fMil ⊢det ri = si implies rtg(ri)≡0 rtg(si) for i = 1,2.

We consider the congruence rules, (RSP), symmetry (Sym) and transitivity (Tra).

(+) Suppose the deterministic proof ends with

r1 = r2 s1 = s2

r1 + s1 = r2 + s2

and assume that rtg(ri)≡0 rtg(si). We are also assuming that ri + si is determin-

istic, so we must have b1,b2 ∈ BExp such that ri ⊥bi si, i = 1,2. However, since

r1 ≡∗ r2 and s1 ≡∗ s2, r1 ⊥b s1 if and only if r2 ⊥b s2, so we may as well take

3.3. Completeness for Skip-free Bisimulation GKAT 151

b1 = b2 = b. We have

rtg(r1 + s1)≡0 rtg(r1)+b rtg(s1)≡0 rtg(r2)+b rtg(s2)≡0 rtg(r2 + s2)

(∗) Suppose the deterministic proof ends with

r1 = s1 r2 = s2

r1 ∗ s1 = r2 ∗ s2

and assume that rtg(ri)≡0 rtg(si), i = 1,2. Again, we obtain a common b ∈ BExp

such that ri ⊥b si for i = 1,2. Using Lemma 3.3.11, we have

rtg(r1 ∗ s1)≡0 rtg(r1)
(b)rtg(s1)≡0 rtg(r2)

(b)rtg(s2)≡0 rtg(r2 ∗ s2)

(RSP) Suppose the deterministic proof ends with the rule t = rt + s⇒ t = r ∗ s and

assume that rtg(t)≡0 rtg(rt+s). Since we are also assuming that r∗s∈Det, there

is a b ∈ BExp such that r ⊥b s. We also have rt ⊥b s, so rtg(t)≡0 rtg(r)rtg(t)+b

rtg(s) by Lemma 3.3.11. It follows from (RSP) that

rtg(t)≡0 rtg(r)(b)rtg(s)≡0 rtg(r ∗ s)

(Sym) Suppose the deterministic proof ends with

r1 = r2

r2 = r1

Then by symmetry of ≡0 and the induction hypothesis, rtg(r2)≡0 rtg(r1).

(Tra) Suppose the deterministic proof ends with

r1 = s s = r2

r1 = r2

Then by assumption, 1fMil ⊢det r1 = s and 1fMil ⊢det s = r2. By the induction

hypothesis, rtg(r1) ≡0 rtg(s) ≡0 rtg(r2). This implies that rtg(r1) ≡0 rtg(r2) by

transitivity of ≡0.

152 Chapter 3. Guarded Kleene Algebra with Tests

The last fact needed in the proof of completeness (Theorem 3.2.18) is that,

up to provable equivalence, every skip-free GKAT expression is equivalent to its

back-translation. This can be proven with the following lemma in hand.

Lemma 3.3.28. If e≡0 f , then gtr(e)≡∗ gtr(f).

Proof. Let e ≡0 f . By soundness, e ↔ f . By Lemma 3.3.8, gtr(e)↔ gtr(f). By

completeness of ≡∗ with respect to bisimilarity (Theorem 2.4.13), gtr(e)≡∗ gtr(f).

Lemma 3.3.29. For any e ∈ GExpsf , e≡0 rtg(gtr(e)).

Proof. We are going to show, by induction on e ∈ GExpsf , that for any d ∈ BExp,

e+d 0≡0 rtg(gtr(e+d 0)). Along the way, we will use the following observations: For

e ∈ GExp and d ∈ BExp,

gtr(e+d 0) = d ·gtr(e)+ d̄ ·0≡∗ d ·gtr(e)

rtg(d ·gtr(e)) = rtg

(
∑

α≤d
α ·gtr(e)

)
(d ·gtr(e)⊥d d̄ ·0, Lemma 3.3.11)

≡0 ∑
α≤d

α · rtg(gtr(e))+d 0 (Lemma 3.3.11,G9 with c = b = α ≤ d)

≡0 rtg(gtr(e))+d 0 (G9 with c = α ≤ d,b = d)

We used the generalized sum notation above, from Remark 3.3.7. Putting the two

observations together with Theorem 3.3.13, we see that

rtg(gtr(e+d 0))≡0 rtg(d ·gtr(e))≡0 rtg(gtr(e))+d 0 (♡)

We will also use Theorem 3.3.13 and Lemma 3.3.28 extensively.

For the base case, we have the following:

• In the 0 case,

rtg(gtr(0+d 0))≡0 rtg(gtr(0))+d 0 (♡)

= 0+d 0

3.3. Completeness for Skip-free Bisimulation GKAT 153

• In the p ∈ Σ case,

rtg(gtr(p+d 0))≡0 rtg(gtr(p))+d 0 (♡)

= rtg

(
∑

α∈At
α p

)
+d 0

≡0 ∑
α∈At

α · rtg(α p)+d 0 (Lemma 3.3.11)

≡0 ∑
α≤d

α · (p+α 0)+d 0 (G10, G2, G0, BA)

≡0 ∑
α≤d

α · p+d 0 (G9, with c = b = α)

≡0 p+d 0 (G9, with c = α ≤ d,b = d)

Now assume e+d 0≡0 rtg(gtr(e+d 0)) and f +d 0≡0 rtg(gtr(f +d 0)) for all d.

• In the guarded union case,

rtg(gtr((e+b f)+d 0))≡0 rtg(gtr(e+b f))+d 0 (♡)

= rtg(b ·gtr(e)+ b̄ ·gtr(f))+d 0

≡0 (rtg(gtr(e))+b rtg(gtr(f)))+d 0 (Lemma 3.3.11)

≡0 (rtg(gtr(e))+d 0)+b (rtg(gtr(f))+d 0) (BD)

≡0 (e+d 0)+b (f +d 0) (ind. hyp.)

≡0 (e+b f)+d 0 (BD)

• For the sequential composition case,

rtg(gtr(e f +d 0))≡0 rtg(gtr(e f))+d 0 (♡)

= rtg(gtr(e))rtg(gtr(f))+d 0

≡0 e f +d 0 (ind. hyp.)

• For the while loop case, we start with rtg(gtr(e(b) f))≡0 e(b) f . We have

rtg(gtr(e(b) f)) = rtg(b ·gtr(e)∗ b̄ ·gtr(f))

≡0 rtg(b ·gtr(e))(b)rtg(b̄ ·gtr(f)) (Lemma 3.3.11)

154 Chapter 3. Guarded Kleene Algebra with Tests

≡0 (rtg(gtr(e))+b 0)(b)(rtg(·gtr(f))+b 0) (♡)

≡0 (e+b 0)(b)(0+b f) (ind. hyp.)

≡0 e(b) f (FP2’)

Thus,

rtg(gtr(e(b) f +d 0))≡0 rtg(gtr(e(b) f))+d 0≡0 e(b) f +d 0

This proves the lemma, because taking d = 1 we have

e
(G0)≡0 e+1 0≡0 rtg(gtr(e+1 0))

(♡)
≡0 rtg(gtr(e))+1 0

(G0)≡0 rtg(gtr(e))

We are now ready to prove Theorem 3.2.18, that skip-free bisimulation GKAT is

complete with respect to bisimilarity.

Theorem 3.2.18 (Completeness I). Let e1,e2 ∈ GExpsf . If e1↔ e2, then e1 ≡0 e2.

Proof. Let e1,e2 ∈ GExp be a bisimilar pair of skip-free GKAT expressions. By

Lemma 3.3.3, e1 and e2 are bisimilar in grph∗(GExpsf ,δsf). By Lemmas 2.2.12

and 3.3.8, the translation gtr : grph∗(GExpsf ,δsf) → (StExp, ℓ) preserves bisimilar-

ity, so gtr(e1) and gtr(e2) are bisimilar in (StExp, ℓ) as well. By Theorem 2.4.13,

gtr(e1)≡∗ gtr(e2). Therefore, by Theorem 3.3.13, rtg(gtr(e1))≡0 rtg(gtr(e2)). Finally,

by Lemma 3.3.29, we have e1 ≡0 rtg(gtr(e1))≡0 rtg(gtr(e2))≡0 e2.

3.4 Completeness for Skip-free Language GKAT

The previous section establishes that ≡0-equivalence coincides with bisimilarity for

skip-free GKAT expressions by reducing the completeness problem of skip-free GKAT

modulo bisimilarity to a solved completeness problem, namely that of one-free star

expressions modulo bisimilarity. In this section we prove a completeness result for

skip-free GKAT modulo language equivalence by reducing it to the completeness

problem of skip-free bisimulation GKAT.

The axiom e0 = 0, the only difference between skip-free GKAT and skip-free

bisimulation GKAT, indicates that the only semantic difference between bisimilarity

and language equivalence in skip-free GKAT is early termination. This motivates our

reduction to skip-free GKAT modulo bisimilarity below, which involves reducing each

3.4. Completeness for Skip-free Language GKAT 155

skip-free expression to an expression representing only the successfully terminating

branches of execution.

Outline of the completeness proof

Now let us turn to the formal proof of Theorem 3.2.19, which says that if e, f ∈GExpsf

are such that L(e) = L(f), then e≡ f . Much like our completeness proof for GKAT

with the uniqueness axiom (Theorem 3.2.19), our strategy is to produce two terms

⌊e⌋ ,⌊ f ⌋ ∈ GExpsf such that e≡ ⌊e⌋, f ≡ ⌊ f ⌋ and ⌊e⌋ ↔ ⌊ f ⌋ in (GExpsf ,δsf). The latter

property tells us that ⌊e⌋ ≡0 ⌊ f ⌋ by Theorem 3.2.18, which allows us to conclude

e ≡ f . The expression ⌊e⌋ can be thought of as the early termination version of e,

obtained by pruning the branches of its execution that cannot end in successful

termination.

In contrast with the pruning operator (Definition 3.1.32) for GKAT expressions

(that required UA), the construction of ⌊e1⌋ and ⌊e2⌋ for skip-free e1 and e2 can be

computed explicitly from the syntax. To properly define the transformation ⌊−⌋ on

expressions, we need the notion of a dead state in a skip-free automaton, analogous

to Definition 3.1.29 [Smo+20].

Definition 3.4.1. Let (X ,δX) be a skip-free automaton. The set D(X ,δX) is the

largest subset of X such for all x ∈ D(X ,δX) and α ∈ At, either δX(x)(α) = ⊥ or

δX(x)(α) ∈ Σ×D(X ,δX). When x ∈ D(X ,δX), x is dead. Otherwise, it is live.

Skip-free GKAT expressions are states in a skip-free automaton, so Defini-

tion 3.4.1 applies to them.

Lemma 3.4.2. Let (X ,δX) be a skip-free automaton and x ∈ X . Then L(x) = /0 if and

only if x ∈ D(X ,δX).

Whether e is dead can be determined by a simple depth-first search, since e can

reach only finitely many expressions in (GExpsf ,δsf) (Lemma 3.1.14). Furthermore,

if a skip-free expression is dead, then it is provably 0.

Lemma 3.4.3. Let e ∈ GExpsf . If e is dead, then e≡ 0.

Proof. Recall the use of the notation be = e+b 0. It suffices to prove that if c ∈ BExp

and cL(e) = /0, then ce = e+c 0 ≡ 0. After all, if this is true and e is dead then

1L(e) = L(e) = /0, and hence e≡ 1e≡ 0.

156 Chapter 3. Guarded Kleene Algebra with Tests

We proceed by induction on e. In the base case, there are two subcases:

• If e = p ∈ Σ, then for all α ≤ c it holds that α p ∈ cL(e). We thus find that

c =BA 0, and therefore p+c 0≡0 p+0 0≡0 0 by (G2,G0).

• If e = 0, then 0+c 0≡ 0 by (G1).

For the inductive step, there are three more cases.

• If e = e1 +b e2 then (c∧b)L(e1) = /0 and (c∧b)L(e2) = /0. By induction, we have

(c∧b)e1 ≡ 0 and (c∧b)e2 ≡ 0. We then derive

c(e1 +b e2)≡ ce1 +b ce2 (BD)

≡ bce1 +b bce2 (G9)

≡ (c∧b)e1 +b (c∧b)e2 (S6’)

≡ 0+b 0 (ind. hyp.)

≡ 0 (G1)

• If e = e1e2, then cL(e1) = /0 or L(e2) = /0. In the former case e1 +c 0 ≡ 0, so

c(e1e2)
(G7)≡ (ce1)e2 ≡ 0e2

(G6)≡ 0. In the latter case, e2 ≡ 0, and thus c(e1e2) ≡

c(e10)
(R0)≡ c0

(G1)≡ 0.

• If e = e1
(b)e2, then bL(e2) = /0, and so be2 ≡ 0. By Proposition 3.2.15:

c(e1
(b)e2)≡ c(e1

(b)be2) (FP2’)

≡ c(e1
(b)0)

≡ c(e1
(b)(00)) (R0)

≡ c0 (G7’,R0)

≡ 0 (G1)

We are now ready to define ⌊−⌋, the transformation on expressions promised

above. Intuitively, we prune the dead subexpressions of e by recursive descent:

Whenever we find a subexpression that inevitably leads to failure, we set it to 0.

3.4. Completeness for Skip-free Language GKAT 157

Definition 3.4.4. The map ⌊−⌋ : sfGKAT→ sfGKAT is defined by

⌊0⌋= 0 ⌊p⌋= p ⌊e1 +b e2⌋= ⌊e1⌋+b ⌊e2⌋

⌊e1e2⌋=

0 e2 is dead

⌊e1⌋ · ⌊e2⌋ otherwise

⌊
e1

(b)e2

⌋
=

0 0+b e2 is dead

⌊e1⌋ (b) ⌊e2⌋ otherwise

The transformation above yields a term that is ≡-equivalent to e, provided that

we include the early termination axiom e0≡ 0. The proof is a simple induction on e,

using Lemma 3.4.3.

Lemma 3.4.5. For any e ∈ GExpsf , e≡ ⌊e⌋.

Proof. We proceed by induction on e. In the base cases, the claim holds immediately,

whether e = 0 or e = p ∈ Σ. For the inductive step, there are three cases.

• If e = e1 +b e2, then e1 +b e2 ≡ ⌊e1⌋+b ⌊e2⌋= ⌊e1 +b e2⌋.

• Suppose e = e1e2. If e2 is dead, then e2 ≡ 0 by Lemma 3.4.3, and so e1e2 ≡

e10
(R0)
≡ 0≡ ⌊e1e2⌋ because e1e2 is dead. Otherwise, e1e2 ≡ ⌊e1⌋ · ⌊e2⌋= ⌊e1e2⌋.

• Suppose e = e1
(b)e2. If be2 is dead, then be2 ≡ 0 by Lemma 3.4.3, and so

e1
(b)e2 ≡ e1

(b)be2 ≡ e1
(b)0

(G7’,R0)
≡ 0 =

⌊
e1

(b)e2
⌋

as seen above. Otherwise, we

derive that e1
(b)e2 ≡ ⌊e1⌋ (b) ⌊e2⌋ ≡

⌊
e1

(b)e2
⌋
.

It remains to show that if L(e) = L(f), then ⌊e⌋ and ⌊ f ⌋ are bisimilar. To this

end, we need to relate the language semantics of e and f to their behaviour. As a

first step, we note that behaviour that never leads to acceptance can be pruned from

a skip-free automaton by removing transitions into dead states.

Definition 3.4.6. Let (X ,δX) be a skip-free automaton. Define ⌊δX⌋ : X → HX by

⌊δX⌋(x)(α) =

⊥ δX(x)(α) = (p,x′), x′ is dead

δX(x)(α) otherwise

Moreover, language equivalence of two states in a skip-free automaton implies

bisimilarity of those states, but only in the pruned version of that skip-free automaton.

The proof works by showing that the relation on X that connects states with the same

language is, in fact, a bisimulation in (X ,⌊δX⌋).

158 Chapter 3. Guarded Kleene Algebra with Tests

Lemma 3.4.7. Let (X ,δX) be a skip-free automaton and let x,y ∈ X . If L(x) = L(y),

then x↔ y in (X ,⌊δX⌋).

Proof. It suffices to prove that R = {(x,y) | L(x) =L(y)} is a bisimulation on (X ,⌊δX⌋).

To see this, suppose that L(x) = L(y). There are three cases to consider.

• If ⌊δX⌋(x)(α) = ⊥, then δX(x)(α) = ⊥ or δX(x)(α) = (p,x′) with x′ ∈ D(X ,δX).

Therefore, there is no word in L(x) of the form αw, by Lemma 3.4.2. Thus,

δX(y)(α) = ⊥ or δX(y)(α) = (p,y′) where L(y′) = /0, whence y′ ∈ D(X ,δX) by

Lemma 3.4.2. In either case, ⌊δX⌋(y)(α) =⊥.

• If ⌊δX⌋(x)(α) = (p,✓) for some p ∈ Σ, then α p ∈ L(x), and therefore α p ∈ L(y).

But then ⌊δX⌋(y)(α) = (p,✓) as well.

• If ⌊δX⌋(x)(α) = (p,x′) ∈ Σ×X , then x′ is not dead in (X ,δX) by Lemma 3.4.2,

and thus there exists some w ∈ L(x′) s.t. α pw ∈ L(x) = L(y). We then also have

δX(y)(α) = (p,y′) for some y′ ∈ X such that w ∈ L(y′). L(y′) ̸= /0 means that y′

is live, so ⌊δX⌋(y)(α) = (p,y′). An inductive argument on words shows that

L(x′) = L(y′), so x′ R y′.

There is one thing left to observe before we are ready to prove the second

completeness theorem of the chapter. Whether we prune dead subexpressions from

a skip-free expression (syntactic pruning) or we prune dead branches from the

small-step semantics (semantic pruning), we end up assigning the same behaviour to

skip-free expressions. In other words, e↔ f in (GExpsf ,⌊δsf⌋) if and only if ⌊e⌋↔ ⌊ f ⌋

in (GExpsf ,δsf). An equivalent way to state this is as follows.

Lemma 3.4.8. The pruning operator ⌊−⌋ : (GExpsf ,⌊δsf⌋)→ (GExpsf ,δsf) is an H-

coalgebra homomorphism.

Proof. We argue that H(⌊−⌋)◦δsf(e)(α) = ⌊δsf⌋◦⌊−⌋(e)(α) by induction on e, for any

α ∈ At. In the base case, H(⌊−⌋) ◦ δsf(0)(α) = ⊥ = ⌊δsf⌋(0)(α) = ⌊δsf⌋(⌊0⌋)(α) and

H(⌊−⌋)◦δsf(p)(α) = (α,⌊p⌋) = (α, p) = ⌊δsf⌋(p)(α). For the inductive step, there are

three cases.

• Suppose e = e1 +b e2. If α ≤ b, then

H(⌊−⌋)◦δsf(e1 +b e2)(α) = H(⌊−⌋)◦δsf(e1)(α)

3.4. Completeness for Skip-free Language GKAT 159

= ⌊δsf⌋(⌊e1⌋)(α) (IH)

= ⌊δsf⌋(⌊e1⌋+b ⌊e2⌋)(α)

= ⌊δsf⌋(⌊e1 +b e2⌋)(α)

• Suppose e = e1 · e2. If e2 is dead, then so is e1 · e2. Hence,

⌊δsf⌋(e1 · e2)(α) =⊥= δsf(0)(α) = δsf(⌊e1 · e2⌋)(α)

Otherwise, if e2 is live, then we have three cases to consider.

– If ⌊δsf⌋(e1e2)(α) =⊥, then we have two more subcases to consider.

* If δsf(e1e2)(α) = ⊥, then δsf(e1)(α) = ⊥, meaning ⌊δsf⌋(e1)(α) = ⊥.

By induction, δsf(⌊e1⌋)(α) =⊥, and so δsf(⌊e1 · e2⌋)(α) =⊥.

* If δsf(e1e2)(α) = (p,e′) with e′ dead, then we can exclude the case

where δsf(e1)(α) = (p,✓), for then e′ = e2, which contradicts that e2

is live. We then know that e′ = e′1e2 such that δsf(e1)(α) = (p,e′1).

Furthermore, since e2 is live and e′ is dead, it must be the case that e′1

is dead. We then find that ⌊δsf⌋(e1)(α) =⊥, and so δsf(⌊e1⌋)(α) =⊥

by induction. We conclude that δsf(⌊e1e2⌋)(α) = δsf(⌊e1⌋⌊e2⌋)(α) =⊥.

– If ⌊δsf⌋(e1e2) = (p,✓), then δsf(e1e2)(α) = (p,✓), which is impossible. We

can therefore exclude this case.

– If ⌊δsf⌋(e1e2) = (p,e′), then δsf(e1e2)(α) = (p,e′) with e′ live. This gives us

two more subcases.

* If δsf(e1)(α) = (p,✓) and e′ = e2, then ⌊δsf⌋(e1)(α) = (p,✓), and so

by induction δsf(⌊e1⌋)(α) = (p,✓). Thus, δsf(⌊e1e2⌋)(α) = (p,⌊e′⌋).

* If δsf(e1)(α) = (p,e′1) and e′ = e′1e2, then e′1 must be live. We then have

⌊δsf⌋(e1)(α) = (p,e′1), and so δsf(⌊e1⌋)(α) = (p,⌊e′1⌋) by induction. We

conclude that δsf(⌊e1e2⌋)(α) = (p,⌊e′1⌋⌊e2⌋) = (p,⌊e⌋).

• Suppose e = e1
(b)e2. If be2 is dead, then so is e1

(b)e2; hence

⌊δsf⌋(e1
(b)e2)(α) =⊥= δsf(0)(α) = δsf(

⌊
e1

(b)e2

⌋
)(α)

Otherwise, if be2 is live, then we first consider the case where a ∈ b.

160 Chapter 3. Guarded Kleene Algebra with Tests

– If ⌊δsf⌋(e1
(b)e2)(α) = ⊥, then δsf(e2)(α) = ⊥ or δsf(e2)(α) = (p,e′2) with

e′2 dead. In either case, ⌊δsf⌋(e2)(α) = ⊥, and so δsf(⌊e2⌋)(α) = ⊥ by

induction. We conclude that δsf(
⌊
e1

(b)e2
⌋
)(α) = δsf(⌊e2⌋)(α) =⊥.

– If ⌊δsf⌋(e1
(b)e2)(α) = (p,✓), then δsf(e2)(α) = (p,✓). Thus, ⌊δsf⌋(e2)(α) =

(p,✓) and so we have δsf(⌊e2⌋)(α) = (p,✓) by induction. We then con-

clude that δsf(
⌊
e1

(b)e2
⌋
)(α) = δsf(⌊e2⌋)(α) = (p,✓).

– If ⌊δsf⌋(e1
(b)e2)(α) = (p,e′2), then δsf(e2)(α) = (p,e′2) with e′2 live. It then

follows that ⌊δsf⌋(e2)(α) = (p,e′2), and so δsf(⌊e2⌋)(α) = (p,⌊e′2⌋) by induc-

tion. We then conclude that δsf(
⌊
e1

(b)e2
⌋
)(α) = δsf(⌊e2⌋)(α) = (p,⌊e′2⌋).

It remains to consider the case where α ≤ b.

– If ⌊δsf⌋(e1
(b)e2)(α) =⊥, then we have two more subcases to consider.

* If δsf(e1
(b)e2)(α) = ⊥, then δsf(e1)(α) = ⊥ as well, since α ≤ b. This

means that ⌊δsf⌋(e1)(α) = ⊥, and so δsf(⌊e1⌋)(α) = ⊥ by induction.

We conclude that δsf(
⌊
e1

(b)e2
⌋
)(α) =⊥.

* If δsf(e1
(b)e2)(α) = (p,e′) with e′ dead, then since α ≤ b we must have

that e′ = e′1e1
(b)e2, with δsf(e1)(α) = (p,e′1). Since be2 is live, so is

e1
(b)e2. It then follows that e′1 is dead, and so ⌊δsf⌋(e1)(α) = ⊥. By

induction, δsf(⌊e1⌋)(α) =⊥, and so δsf(
⌊
e1

(b)e2
⌋
)(α) =⊥.

– If ⌊δsf⌋(e1
(b)e2)(α) = (p,✓), then δsf(e1

(b)e2)(α) = (p,✓), which is impos-

sible when α ≤ b. We can therefore exclude this case.

– If ⌊δsf⌋(e1
(b)e2)(α) = (p,e′), then δsf(e1

(b)e2)(α) = (p,e′) with e′ live. Since

α ≤ b, we have that δsf(e1)(α) = (p,e′1) and e′ = e′1 · e1
(b)e2. Since e′ and

e1
(b)e2 are live, so is e′1. We then find that ⌊δsf⌋(e1)(α) = (p,e′1), meaning

δsf(⌊e1⌋)(α) = (p,⌊e′1⌋) by induction. We conclude by deriving

δsf(
⌊

e1
(b)e2

⌋
)(α) = (p,

⌊
e′1
⌋
· ⌊e1⌋ (b) ⌊e2⌋) = (p,

⌊
e′
⌋
)

Recall that e≡ f denotes sfGKAT ⊢ e = f (see Figure 3.8). In particular, there is

no need for the uniqueness axiom in skip-free GKAT, so it is not included in sfGKAT.

We now have all the ingredients necessary to prove Theorem 3.2.19.

Theorem 3.2.19 (Completeness II). Let e1,e2 ∈GExpsf . If L(e1) = L(e2), then e1 ≡ e2.

3.5. Relation to GKAT 161

Proof. If L(e1) = L(e2), then by Lemma 3.4.7, e1 ↔ e2 in (GExpsf ,⌊δsf⌋), which by

Lemma 3.4.8 implies that ⌊e1⌋↔ ⌊e2⌋ in (GExpsf ,δsf). From Theorem 3.2.18 we know

that ⌊e1⌋ ≡0 ⌊e2⌋, and therefore e1 ≡ e2 by Lemma 3.4.5.

3.5 Relation to GKAT

So far, we have seen the technical development of skip-free GKAT without much

reference to the original development of GKAT. In this section, we make the case

that the semantics of skip-free GKAT is merely a simplified version of the semantics

of GKAT, and that the two agree on which expressions are equivalent after seeing

skip-free GKAT expressions as GKAT expressions. More precisely, we identify the

bisimulation and language semantics of skip-free GKAT given in Section 3.2 with

instances of the existing bisimulation and language semantics of GKAT proper. The

main takeaway is that two skip-free GKAT expressions are equivalent in our semantics

precisely when they are equivalent when interpreted as proper GKAT expressions in

the existing semantics.

α ≤ b

b⇒ α

α ≤ b e1⇒ α

e1 +b e2⇒ α

α ≤ b̄ e2⇒ α

e1 +b e2⇒ α

α ≤ b e1
α|p−−→ e′

e1 +b e2
α|p−−→ e′

α ≤ b̄ e2
α|p−−→ e′

e1 +b e2
α|p−−→ e′

p α|p−−→ 1

e1⇒ α e2⇒ α

e1e2⇒ α

e1⇒ α e2
α|p−−→ e′

e1e2
α|p−−→ e′

e1
α|p−−→ e′

e1e2
α|p−−→ e′ # e2

α ≤ b e α|p−−→ e′

e(b) α|p−−→ e′ # e(b)
α ≤ b̄

e(b)⇒ α

Figure 3.9: The transition function δ̃ : GExp→ (⊥+✓+Σ×GExp)At defined inductively.
Here, e1 # e2 is e2 when e = 1 and e1 · e2 otherwise, b ∈ BExp, p ∈ Σ, and e,e′,ei ∈
GExp.

We begin with an intermediary step, a slightly different but equivalent small-step

semantics for GKAT. We equip GExp with the GKAT automaton structure (GExp, δ̃)

outlined in Figure 3.9. The definition of δ̃ diverges slightly from the small-step

semantics found in Figure 3.2. Fortunately, this does not make a difference in terms

of the bisimulation semantics: Two expressions are bisimilar in (GExp, δ̃) if and only

if they are bisimilar in the original semantics.

There is a fairly easy way to convert a skip-free automaton into a GKAT au-

tomaton: Simply reroute all accepting transitions into a new state ⊤, that accepts

162 Chapter 3. Guarded Kleene Algebra with Tests

immediately, and leave the other transitions the same.

Definition 3.5.1. Given a skip-free automaton (X ,δX), we define the automaton

embed(X ,δX) = (X +⊤, δ̃X), where δ̃X is defined by

δ̃X(x)(α) =

✓ x =⊤

(p,⊤) δX(x)(α) = (p,✓)

δX(x)(α) otherwise

We can show that two states are bisimilar in a skip-free automaton if and only if

these same states are bisimilar in the corresponding GKAT automaton.

Lemma 3.5.2. Let (X ,δX) be a skip-free automaton, and let x,y ∈ X . Then

x↔ y in (X ,δX) if and only if x↔ y in embed(X ,δX)

The syntactic skip-free automaton (GExpsf ,δsf) can of course be converted to

a GKAT automaton in this way. It turns out that there is a very natural way of

correlating this automaton to the syntactic GKAT automaton (GExp, δ̃).

Lemma 3.5.3. The relation {(e,e) | e ∈ GExpsf}∪{(⊤,1)} is a bisimulation between

embed(GExpsf ,δsf) and (GExp, δ̃).

We now have everything to relate the bisimulation semantics of skip-free GKAT

expressions to the original bisimulation semantics of GKAT expressions.

Lemma 3.5.4. Let e, f ∈ GExpsf . The following holds:

e↔ f in (GExpsf ,δsf) if and only if e↔ f in (GExp, δ̃)

Proof. We derive using Lemmas 3.5.2 and 3.5.3, as follows: since the graph of embed

is a bisimulation, e↔ f in (GExpsf ,δsf) if and only if e↔ f in embed(GExpsf ,δsf) if

and only if e↔ f in (GExp, δ̃). In the last step, we use the fact that bisimulations are

composable, as in Lemma 2.2.12.

Example 3.5.5. We can now make a previous statement precise. Namely, that there are

GKAT programs of the form ep with e∈GExp and p∈ Σ such that ep is not expressible

3.5. Relation to GKAT 163

in skip-free GKAT. More precisely, ep is not bisimilar to any skip-free g ∈ GExpsf ,

where bisimilarity is considered between (GExp, δ̃) (equivalently, (GExp,δ)) and

embed(GExpsf ,δ). The example presented before was (q(p+b 1))(b)p for 0 < b < 1

and p ̸= q ∈ Σ, whose corresponding automaton is

ep (p+b 1)ep

✓

1

b | q

b | p

b̄ | p b̄ | p

e = (q(p+b 1))(b)p

Observe that ¬(ep↔ (p+b 1)ep), so that the automaton above has no proper quotients.

Also note that the automaton above clearly has an underlying skip-free automaton.

If there were a g ∈ GExpsf such that ep↔ g, then applying grph∗ to the underlying

skip-free automaton would produce a bisimulation collapse of a well-layered prechart,

which we know must also be well-layered by Definition 2.4.2 and Theorem 2.4.12.

The prechart corresponding to the automaton above is not well-layered.

Language semantics

Since skip-free GKAT expressions are also GKAT expressions, we are left with two

language interpretations of skip-free expressions. Let us use L̂ to denote the GKAT

language semantics from Definition 3.1.6. Then L̂ can be expressed in terms of L.

Lemma 3.5.6. For e ∈ GExpsf , it holds that L̂(e) = L(e) ·At.

As an easy consequence of the above, we find that the two semantics must

identify the same skip-free GKAT expressions.

Lemma 3.5.7. For e, f ∈ GExpsf , we have L(e) = L(f) if and only if L̂(e) = L̂(f).

By Theorem 3.2.19, these properties imply that sfGKAT also axiomatizes rela-

tional equivalence of skip-free GKAT-expressions. Recall that a relational interpre-

tation of GKAT is a triple σ = (S,eval,sat), where S is a set, eval : Σ→P(S×S), and

sat : At→P(S), and generates a function ⌊⌈−⌋⌉
σ

: GExp→P(S× S). We obtain the

notion of relational semantics for skip-free GKAT by interpreting skip-free GKAT

expressions as GKAT expressions.

164 Chapter 3. Guarded Kleene Algebra with Tests

Corollary 3.5.8. Let e, f ∈ GExpsf , we have e ≡ f if and only if ⌊⌈e⌋⌉
σ
= ⌊⌈ f ⌋⌉

σ
for all

relational interpretations σ .

Provable Equivalence

Finally, we relate provable equivalences between skip-free GKAT expressions to those

provable between proper GKAT expressions, showing that proofs of equivalence for

skip-free GKAT expressions can be replayed in the larger calculus, without UA.

The axioms of GKAT are provided in Figure 3.5. Since skip-free GKAT expres-

sions are also GKAT expressions, we are left with four notions of provable equivalence

for GKAT expressions: As skip-free expressions or GKAT expressions in general, either

with or without (R0). These are related as follows.

Theorem 3.5.9. Let e, f ∈ GExpsf . Then

(1) sfGKAT0 ⊢ e = f if and only if GKAT0 ⊢ e = f , and

(2) sfGKAT ⊢ e = f if and only if GKAT ⊢ e = f .

Proof. Left-to-right is straightforward because every axiom of sfGKAT is an axiom

of GKAT. To go from right-to-left in either (1) or (2), it really needs to be shown

that the axioms (G4) and (G5) can safely be avoided. This can be seen from the

completeness theorems for skip-free GKAT.

For (1), suppose GKAT0 ⊢ e = f . Then e↔ f in (GExp,δ). As we have seen, this

means that e↔ f in (GExp, δ̃), and as skip-free expressions, e↔ f in (GExpsf ,δsf).

By the completeness of sfGKAT0, sfGKAT0 ⊢ e = f .

For (2), suppose that GKAT ⊢ e = f . Then by soundness, L̂(e) = L̂(f). We

therefore have L(e) ·At = L(f) ·At, which implies L(e) = L(f). By the completeness

of sfGKAT, sfGKAT ⊢ e = f .

Note that the uniqueness axiom does not appear in the above theorem. One con-

sequence of this is that our completeness theorems for skip-free GKAT are genuinely

partial completeness results for GKAT: They tell us that the axiomatization of GKAT

is complete for skip-free GKAT expressions.

3.6 Related Work

This chapter fits into a larger research program focused on understanding the logical

and algebraic content of uninterpreted programs. Kleene’s paper introducing the

3.6. Related Work 165

algebra of regular languages [Kle56] was a foundational contribution to this research

program, containing an algebraic account of mechanical programming and some of

its sound equational laws. Kleene’s paper also contains an interesting completeness

problem: Give a complete description of the equations satisfied by the algebra

of regular languages. Salomaa was the first to provide a sound and complete

axiomatization of language equivalence for regular expressions [Sal66].

The axiomatization in op. cit. included an inference rule with a side condition

that prevented it from being algebraic in the sense that the validity of an equation

is not preserved when substituting letters for arbitrary regular expressions. Never-

theless, this inspired axiomatizations of several variations and extensions of Kleene

algebra [Wag+19; Smo+20; Sch+22], as well as Milner’s axiomatization of the

algebra of star behaviours [Mil84], and other related process algebras [BW90]. The

side condition introduced by Salomaa is often called the empty word property, an early

version of a concept from process theory called guardedness9 that is also fundamental

to the theory of iteration [BÉ93].

Our axiomatization of skip-free GKAT is algebraic due to the lack of a guarded-

ness side-condition (it is an equational Horn theory [Mak87]). This is particularly

desirable because it allows for an abundance of other models of the axioms, including

relational models like in Example 3.1.5. Kozen proposed an algebraic axiomatization

of Kleene algebra that is sound and complete for language equivalence [Koz91],

which has become the basis for a number of axiomatizations of other Kleene alge-

bra variants [Fos+15; Kap+19; Kap+20; Wag+20] including Kleene algebra with

tests [KS96]. KAT also has a plethora of relational models, which are desirable for

reasons we hinted at in the beginning of the thesis.

GKAT is a fragment of KAT that was first identified in [KT08]. It was later given

a sound and complete axiomatization in [Smo+20], although the axiomatization is

neither algebraic nor finite (it includes UA, an axiom scheme that stands for infinitely

many axioms that all have a guardedness side condition).

Despite the existence of an algebraic axiomatization of language equivalence in

KAT, GKAT has resisted algebraic axiomatization so far. Skip-free GKAT happens to

9This is a different use of the word “guarded” than in “guarded Kleene algebra with tests”. In the
context of process theory, a recursive specification is guarded if every recursive call occurs within the
scope of an action.

166 Chapter 3. Guarded Kleene Algebra with Tests

be a fragment of GKAT in which every expression is guarded, thus eliminating the

need for the side condition in Figure 3.5 and allowing for an algebraic axiomatization.

One approach to an algebraic axiomatization of full GKAT involves the introduction

of an order. For instance, an inequational axiomatization resembling that of KAT can

be gleaned from my recent preprint [Sch22a]. Unfortunately, one of my axioms in

op. cit. implicitly includes a Salomaa-like side condition, and is not algebraic. An

alternative approach to an algebraic axiomatization takes inspiration from process

algebra: The GKAT axioms for bisimilarity of ground terms (without recursion)

can be obtained from the small-step semantics of GKAT using a GSOS law [Ace94;

Ace+11a; Ace+11b]. Following a common approach to axiomatization in process

algebra, we could extend the base terms with iteration. The problem with this

approach is that it produces a calculus that is more expressive than GKAT (it is

equivalent to a calculus we will see in Chapter 4).

On the other hand, our algebraic axiomatization of skip-free GKAT was inspired

by (and relies on) a completeness theorem in process algebra: the algebraic axiomati-

zation of one-free star behaviours due to Grabmayer and Fokkink [GF20]. In op. cit.,

Grabmayer and Fokkink proved that Milner’s axioms for star behaviours [Mil84]

are complete for bisimilarity of one-free star expressions. This gave a partial solu-

tion to Milner’s completeness problem, which was recently solved in full by Grab-

mayer [Gra22]. Our proof that bisimulation GKAT is a complete axiomatization of

bisimilarity for skip-free GKAT expressions is based on the observation that skip-

free bisimulation GKAT is equivalent to the deterministic fragment of Grabmayer

and Fokkink’s one-free regular expressions modulo bisimilarity. This observation

allowed us to reduce the completeness problem for skip-free GKAT to Grabmayer and

Fokkink’s work, bypassing the intricate combinatorics in their completeness proof.

The idea of reducing one completeness problem to another is common in Kleene

algebra. For instance, it is behind the completeness proof of KAT [KS96]. Cohen

also reduced weak Kleene algebra as an axiomatization of star expressions modulo

simulation to monodic trees [Coh09], whose completeness was conjectured by Takai

and Furusawa [TF06]. Grabmayer’s solution to the completeness problem of regular

expressions modulo bisimilarity [Gra22] can also be seen as a reduction to the one-

free case, since his crystallization procedure produces an automaton that can be solved

3.7. Discussion 167

using the technique found in [GF20]. Other instances of reductions include [Coh94;

And+14; Dou+19; Wag+20; Kap+19; Kap+18; LS17; PW22; KM14]. Recent

work has started to study reductions and their compositionality properties [Dou+19;

Kap+20; PRW21].

3.7 Discussion

This chapter continues the study of an efficient fragment of Kleene Algebra with Tests

(KAT) initiated in [Smo+20], where the authors introduce GKAT and provide an

efficient decision procedure for equivalence. The authors of [Smo+20] proposed a

candidate axiomatization, but left open two questions.

1. The first question concerned the existence of an algebraic axiomatization. This

is essential to enable compositional analysis.

2. The second question left open in [Smo+20] was whether an axiomatization

that did not require an axiom scheme was possible.

In this chapter, a large fragment of GKAT is identified, which we call skip-free GKAT

(sfGKAT), that can be axiomatized algebraically without relying on an axiom scheme.

We show that the axiomatization works well for both bisimilarity and language

equivalence by proving completeness results for both semantics. Having the two

semantics is interesting from a verification point of view as it gives access to different

levels of precision when analyzing program behaviour. In the case of GKAT, we also

saw that the completeness problem for one semantics could be reduced to the other.

We provide a reduction of the completeness proof for language semantics to

the one for bisimilarity. Our approach enables two things: It breaks down the

completeness proofs and reuses some techniques while also highlighting the exact

difference between the two equivalences (captured by the axiom e ·0≡ 0 which does

not hold for bisimilarity). We also showed that proofs of equivalence in skip-free

GKAT transfer without any loss to proofs of equivalence in GKAT.

There are several directions for future work. The bridge between process algebra

and Kleene algebra has not been exploited to its full potential. The fact that we could

reuse results by Grabmayer and Fokkink [Gra22; GF20] was a major step towards

completeness. An independent proof would have been much more complex and very

likely required the development of technical tools resembling those in [Gra22; GF20].

168 Chapter 3. Guarded Kleene Algebra with Tests

We hope the results in this chapter can be taken further and more results can be

exchanged between the two communities to solve open problems.

The completeness problem for full GKAT remains open, but our completeness

results for skip-free GKAT are encouraging. I believe they show a path towards

studying whether an algebraic axiomatization can be devised or a negative result can

be proved. A first step in exploring a completeness result would be to try extending

Grabmayer’s completeness result [Gra22] to a setting with output variables—this is

a non-trivial exploration, but we are hopeful will yield new tools for completeness

(see Section 4.5). As mentioned in the introduction, NetKAT [And+14] (and its

probabilistic variants [Fos+16; Smo+17]) have been one of the most successful

extensions of KAT. We believe the step from skip-free GKAT to a skip-free guarded

version of NetKAT is also a worthwhile exploration.

Chapter 4

Effectful Process Calculi

Process algebras have a long tradition, notably in the study of concurrency, pio-

neered by seminal works of Milner [Mil84; Mil80] and many others [Bae05; BW90;

BBR09]. Conceptually, a process algebra is a structure consisting of a set of processes

(states in a running, state-based, interactive machine), operations for composing

and combining processes, and equations for reasoning about process equivalence. In

Milner’s CCS [Mil80], where processes branch nondeterministically, there is a binary

operation that constructs from a pair of processes e and f the process e+ f that

nondeterministically chooses between executing either e or f . This acts precisely like

the join operation in a semilattice. In fact, elements of a free semilattice are exactly

sets, as the free semilattice generated by a set X is the set P+
ω X of finite nonempty

subsets of X [Man76]. This is our first example of a more general phenomenon: The

types of branching found in process algebras are often captured by a free algebra con-

struction1. We refer to branching captured by free algebra constructions as effectful,

in reference to Plotkin and Power’s algebraic effects [PP02]2.

For another example of effectful branching, in the probabilistic process algebra

literature, the process denoted e⊕p f flips a weighted coin and runs e with probability

p and f with probability 1− p. The properties of ⊕p are axiomatized and studied

in convex algebra, an often revisited algebraic theory of probability [Sto49; Świ74;

PR95; And99; BSV21]. The free convex algebra on a set X is the set DωX of finitely

supported probability distributions on X [Sto49; BSV19; Jac10].

A third example is GKAT, where the process e+b f proceeds with e if a certain

1I.e., a finitary monad [Law63].
2The words effect and branching usually refer to strong and commutative monads respectively (see

for example [PP02; Cîr17]). For the sake of simple terminology, we use these terms more broadly in
this chapter. See the text under Algebraic effects in Related Work (Section 4.6) for more detail.

170 Chapter 4. Effectful Process Calculi

Boolean predicate b holds and otherwise proceeds with f , emulating the if-then-else

constructs of imperative programming languages [Man91; BT83; McC61]. If the

predicates are taken from a finite Boolean algebra 2At, the free algebra of if-then-else

clauses on a set X is the function space XAt. This explains why models of GKAT

programs often take the form of functions At→ X .

Effectful process algebra

This chapter proposes a framework, effectful process algebra, in which these languages

can be uniformly described and studied. Roughly, an effectful process algebra is an al-

gebraic structure consisting of processes whose branching behaviour can be captured

by an algebraic theory. The algebra of regular behaviours (or ARB) introduced by

Milner [Mil84] is a prototypical example: ARB employs nondeterministic choice as a

branching operation, prefixing of terms by atomic actions, a constant representing

deadlock, variables, and a recursion operator for each variable. Specifications are

interpreted operationally in the style of structural operational semantics [Plo04],

which sees the set Exp of all process terms as one large labelled transition system.

This is captured succinctly as a coalgebra (Definition 2.2.6) of the form

β : Exp→Pω(Var+Act×Exp) (4.1)

where Pω is the finite powerset functor (only finitely branching processes can be

specified in ARB). From a technical point of view, Pω is the functor part of the monad

on the category of sets presented by the algebraic theory of semilattices with bottom.

By substituting the finite powerset functor in (4.1) with other monads presented

by algebraic theories, we obtain a parametrized family of process types that covers

the examples above and a general framework for studying the processes of each type.

Instantiating the framework with a given algebraic theory gives a fully expressive

specification language for processes with branching given by that theory and a

complete axiomatization of behavioural equivalence for specifications.

Effectful process calculi

I begin the chapter by introducing a family of process calculi, called effectful process

calculi, that is parametrized by a kind of equational algebraic theory. I give each

effectful process calculus an operational and a denotational semantics and show

171

that they coincide. I also show that effectful process calculi admit a Kleene theorem,

which says that every finitary behaviour can be specified by an expression in the

syntax of the calculus. This naturally leads to a sound and complete axiomatization

of equivalence.

The specific kinds of algebraic theories covered by the framework are finitary

and have a notion of unguarded recursion built-in. For example, given any term

p(x, y⃗) in the language of semilattices with bottom, there is a canonical term q such

that q = p(q, y⃗) up to the axioms—namely, q = p(0, y⃗) (q is the least fixed-point of

x 7→ p(x, y⃗)). In ARB, this allows recursion to be performed on arbitrary terms, even

those in which variable outputs appear in the initial stages of execution. Algebraic

theories included in the effectful process algebra framework are equipped with a

fixed-point operator that plays a role analogous to p(u, y⃗) 7→ p(0, y⃗) from ARB.

Star Fragments

One striking feature of many of the specification languages we construct is that they

contain a fragment consisting of nonstandard analogues of regular expressions. We

call these expressions star expressions and the fragment composed of star expressions

the star fragment.

Star fragments extend several existing analogues of regular expressions found in

the process theory literature, including basic process algebra [BK88] and Andova’s

probabilistic basic process algebra [And99], by adding recursion operators modelled

after the Kleene star. Milner is the first to notice the star fragment of ARB in [Mil84],

whose syntax is given by regular expressions. He observes that the algebra of

processes denoted by star expressions is more unruly than Kleene’s algebra of regular

languages, and that it is not clear what the appropriate axiomatization should

be. He offers a reasonable candidate based on Salomaa’s first axiomatization of

Kleene algebra [Sal66], but ultimately leaves completeness as an open problem.

This problem was subject to many years of extensive research [FZ94; Fok97; FZ97;

BCG06; GF20; Gra21] before Grabmayer announced his positive solution [Gra22].

Replacing nondeterministic choice with the if-then-else branching structure

of GKAT (and an analogous unguarded iteration operator), we obtain the process

behaviours explored in bisimulation GKAT, the process algebra inspired take on

GKAT from Chapter 3. This makes the open problem of axiomatizing GKAT (without

172 Chapter 4. Effectful Process Calculi

the use of an extremely powerful axiom scheme like the uniqueness axiom (UA) from

Chapter 3 [Smo+20]), yet another problem of axiomatizing a star fragment.

Our general characterization of star fragments puts all these languages under

one umbrella, and shows how they are derived canonically from a single abstract

framework. In this chapter, I give each star fragment both an operational and

a denotational semantics, show that the operational and denotational semantics

coincide with the semantics of their ambient effectful process calculi, and propose a

uniform axiomatization of these algebras by generalizing Milner’s axioms for regular

expressions modulo bisimilarity (based on Salomaa’s [Sal66]). Unlike effectful

process calculi, star fragments do not admit a Kleene theorem. As we saw in Chapter 2,

the lack of a Kleene theorem is a serious barrier to finding a completeness proof

for this kind of axiomatization. At the end of the chapter, an analogue of UA from

Chapter 3 is used to obtain a completeness theorem for star fragments.

Outline

In summary, the contributions of this chapter are as follows:

• I present a family of process types parametrized by what are called branching

theories (Section 4.1), algebraic theories equipped with a basic notion of re-

cursion (this allows us to resolve unguarded recursive calls). For each process

type, I give a uniform syntax and operational semantics (Section 4.2). I show

how these can be instantiated to concrete algebraic theories including guarded

algebras and pointed convex algebras (and more). These provide, respectively,

a calculus of processes capturing control flow of simple imperative programs

and a calculus of probabilistic processes.

• I define an associated denotational semantics and show that it agrees with the

operational semantics (Section 4.3). This coincidence result is important in

order to prove completeness of the uniform axiomatization we propose for each

process type (Section 4.4).

• Finally, I define the star fragments of effectful process algebras and propose

a sound axiomatization of behavioural equivalence of star expressions (Sec-

tion 4.5). I also show that star fragments of concrete instances of our calculi

yield known examples in the literature like, GKAT [Smo+20; Sch+21]. The

chapter ends with a general completeness theorem for star fragments that uses

4.1. A Parametrized Family of Process Types 173

an analog of the uniqueness axiom from Chapter 3.

Related work is discussed in more detail in Section 4.6.

4.1 A Parametrized Family of Process Types

In this section, I present a family of process types parametrized by a branching theory,

an algebraic theory equipped with a kind of recursion. The processes of interest

are stateful, meaning they consist of a set of states and a suitably structured set of

transitions between states. Stateful systems fit neatly into the general framework of

coalgebra [Rut00], which stipulates that the type of structure carried by the transitions

can be encoded in an endofunctor on the category Set of sets and functions. We

covered the basics of coalgebra in Chapter 2.

In this chapter, we consider coalgebras for endofunctors of the form

BM = M(Var+Act× Id) (4.2)

for fixed sets Var and Act and a specific kind of functor M : Set→ Set. Here, Id denotes

the identity functor on Set. Intuitively, there are two layers to the behaviours of

these coalgebras. The first layer consists of either an output variable in Var or an

action from Act that moves on to another state, and the other layer (encoded by M)

combines output variables and action steps in a structured way.

Example 4.1.1. When M =Pω , we obtain Milner’s nondeterministic processes [Mil84].

Coalgebras for BPω
are functions of the form β : X →Pω(Var+Act×X), or labelled

transition systems with an additional decoration by variables. Write x a−→ y to mean

(a,y) ∈ β (x) and x⇒ v to mean v ∈ β (x). The image below posits a well-defined

BPω
-coalgebra β : {x1,x2,x2}→ Pω(Var+Act×{x1,x2,x3}).

v x1 x2 x3
a1 a1 a2

β (x1) = {v}

β (x2) = {(a1,x1),(a1,x3)}

β (x3) = {(a2,x3)}

Here, a1,a2 ∈ Act and v ∈ Var.

Remark 4.1.2. There are many kinds of nondeterminism studied in the program

semantics literature [BW81]. Milner’s processes specifically exhibit angelic nondeter-

174 Chapter 4. Effectful Process Calculi

minism, a form of nondeterministic choice that favours unproblematic branches of

execution (as seen from the axiom r+0 = r).

Algebraic Theories and Their Monads

We are particularly interested in BM-coalgebras when M is the functor component of

a free-algebra construction that captures the desired type of branching. This captures

the case where M = Pω (Example 4.1.1), but it also captures many other examples

(see the end of this subsection).

Definition 4.1.3. A monad is a triple (M,η ,µ) consisting of an endofunctor M on Set

and a pair of natural transformations η : Id⇒M and µ : MM⇒M, called the unit

and multiplication respectively, satisfying

µ ◦ηM = idM = µ ◦M(η) µM ◦µ = M(µ)◦µ

Definition 4.1.4. A finitary equational theory is a pair (S,EQ) consisting of a sequence

of sets S= {Sn}n∈N called an algebraic signature and a set EQ⊆ (S∗N)×(S∗N) of formal

equations between S-terms, where given a set X the set S∗X of S-terms is defined

S∗X ∋ ti ::= x ∈ X | σ(t1, . . . , tn) (σ ∈ Sn)

An S-algebra is a pair (X ,α) consisting of a set X and for each n ∈ N and σ ∈ Sn a

function σα : Xn→ X . An S-algebra homomorphism h : (X ,αX)→ (Y,αY) is a function

h : X → Y such that for any n ∈ N, σ ∈ Sn, and x1, . . . ,xn ∈ X ,

h(σαX (x1, . . . ,xn)) = σ
αY (h(x1), . . . ,h(xn))

If α,αX ,αY are clear from context, we omit it from the notation.

We identify S with the polynomial endofunctor S =
⊔

n∈N Sn× Idn on Set. Equiva-

lently, an S-algebra is as a pair (X ,α) consisting of a set X and a function α : SX → X .

The original definition is obtained by setting

σ
α(x1, . . . ,xn) = α(σ ,x1, . . . ,xn)

An S-algebra homomorphism is equivalently described as h : (X ,αX)→ (Y,αY) such

4.1. A Parametrized Family of Process Types 175

p(0, . . . ,n) = q(0, . . . ,m) x(−) : N→ X

p(x0, . . . ,xn) = q(x0, . . . ,xm)
(Con)

(∀i≤ n) pi = qi σ ∈ Sn

σ(p1, . . . , pn) = σ(q1, . . . ,qn)

Figure 4.1: The rules for deriving EQ ⊢ t = s for p,q,r ∈ S∗X , including a generalized version
of the inference rule (Con) from Figure 2.1.

that αY ◦h = S(h)◦αX .

Each element (t(0, . . . ,n),s(0, . . . ,m)) ∈ EQ should be thought of as an equation

between S-terms, and so we instead write t
(EQ)
= s. We replace the natural numbers

appearing in S-terms with x,xi,y,yi. A formal equation t = s is a consequence of EQ,

written EQ ⊢ t = s, if it can be derived from (Ref), (Sym), and (Tra) from Figure 2.1

and the rules in Figure 4.1 (i.e., equational logic [Bir35]). A binary relation satisfying

the rules in Figure 4.1 is an EQ-congruence.

Definition 4.1.5. An algebraic theory (S,EQ) presents a monad (M,η ,µ) if there is

a natural transformation ρ : SM⇒M such that for any set X , (MX ,ρX) is the free

(S,EQ)-algebra on X . That is, (MX ,ρX) satisfies EQ, and for any S-algebra (Y,α) also

satisfying EQ and any function h : X → Y , there is a unique S-algebra homomorphism

hα : (MX ,ρX)→ (Y,α) such that h = hα ◦η .

This universal property implies that any two monads presented by a given

algebraic theory are isomorphic, so we often say “the” monad presented by an

algebraic theory.

Remark 4.1.6. The definition of monad presentation I have chosen to employ makes

the algebraic signature portion of an algebraic presentation explicit. A second, much

older definition requires that the full subcategory of Alg(S) consisting of S-algebras

satisfying EQ is isomorphic to the Eilenberg-Moore category for the monad [Bec69;

BSV19; BSV21]. A third definition involves a monad quotient, as seen in [RHE22].

All three are equivalent in the current setting [Man76, Theorem 2.17].

Example 4.1.7. The finite powerset functor is part of the monad (Pω ,{−},
⋃
) that is

presented by the theory of semilattices with bottom [Joh82, p. 4.4]. The theory of

semilattices is the pair ({0}+{+}× Id2,SL), since the arity of a constant operation is

0 and + is a binary operation, and SL consists of

x+0
(SL1)
= x x+ x

(SL2)
= x x+ y

(SL3)
= y+ x x+(y+ z)

(SL4)
= (x+ y)+ z

176 Chapter 4. Effectful Process Calculi

Not every algebraic theory has such a familiar presentation as the theory of

semilattices, but it is nevertheless true that every algebraic theory presents a monad.

Without a concrete example in mind, i.e., given an abstract algebraic theory (S,EQ),

we define the monad (M,η ,µ) by setting

MX = (S∗X)/EQ= {[q]EQ | q ∈ S∗X} [q]EQ = {p ∈ S∗X | EQ ⊢ p = q}

That is, MX is the set of EQ-congruence classes of S-terms. The unit η computes

congruence classes of variables, and µ evaluates terms. This monad is presented by

(S,EQ), as witnessed by the transformation ρ defined to be the restriction of µ to the

operations of S on S-terms [RHE22]. We take this to be the default presentation of

an arbitrary algebraic theory.

Remark 4.1.8. In the future, given p ∈ S∗X we write p instead of [p]EQ when it is

understood from context that an element of MX is being referred to.

Our aim is to develop a (co)algebraic framework for studying BM-coalgebras

when M is the functor part of a monad presented by an algebraic theory. Our frame-

work will take the form of a singly-typed syntax (in the style of Milner [Mil84]) for

specifying recursive processes, a coalgebraically defined operational interpretation of

said processes, and an axiomatization of a general notion of behavioural equivalence

between programs.

Branching theories and unguarded recursion

As it turns out, capturing arbitrary recursive programs in a singly-typed syntax

requires an operational interpretation of unguarded recursive calls. Unguarded

recursion (by definition) occurs at the level of branching, and requires some design

choices on the part of the user of the framework. In sum, the ingredients needed for

one of our process calculi are as follows.

Definition 4.1.9. An (equational) branching theory is a triple (S,EQ, fp) consisting

of a nontrivial3 equational theory (S,EQ) and a natural transformation fp : S∗(1+

Id)⇒ S∗, called the variable reduction operator, such that whenever EQ ⊢ t = s,

EQ ⊢ fp (t) = fp (s). A branching theory (S,EQ, fp) is called iterative if the variable

3That is, the equation x = y is not a consequence of EQ for distinct x and y.

4.1. A Parametrized Family of Process Types 177

reduction operator furthermore satisfies

EQ ⊢ fp X(t(u, x⃗)) = t(fp X(t(u, x⃗)), x⃗) (4.3)

for any t(u, x⃗) ∈ S∗(1+X), where 1 = {u}.

The nontriviality assumption is equivalent to requiring that the unit η of the

monad presented by (S,EQ) is injective. That is, the EQ-congruence classes [x]EQ and

[y]EQ in MX are distinct for distinct variables x and y in X .

Effectful process calculi allow for the specification of recursive programs like

µv v, the program that is recursively defined to be itself. This recursive definition

does not have a canonical meaning in general, so to give it meaning requires a

design choice. A variable reduction operator represents such a design choice. For

example, the divergent program while true do assert true can be modelled as the

process term µv v (see Example 4.2.7). One way to interpret this program is the same

way we might interpret assert false (i.e., as a crash). Another valid way to interpret

the divergent program is as raise Exception(’Infinite loop’), like in Python. This can

modelled by including a constant c (representing the exception) in the signature S

and using the variable reduction operator fp X(t(u, x⃗)) = t(c, x⃗).

One should think of the variable reduction operator as an eliminable part of the

syntax: Let X be a set of variables containing a distinguished variable u. Then where

1 = {u}, X ∼= 1+X \u, so fp defines a function fp : S∗X → S∗(X \u). Composing with

the inclusion S∗(X \ u) ↪→ S∗X , we obtain an operator on S∗X that produces terms

without the free variable u.

Definition 4.1.10. We write fp u p(u, x⃗) to denote the term fp X(p(u, x⃗)) as it appears

in S∗X , for any p(u, x⃗) ∈ S∗X .

Note that by construction, fp u p(u, x⃗) = fp v p(v, x⃗) for any u,v ∈ X , and that by

naturality S∗(f)(fp u p(u, x⃗)) = fp u p(u, f (⃗x)) for any f : X→Y such that u∈ X ∩Y and

f−1(u) = {u}. That is, the term produced by the variable reduction operator does not

depend on the symbol used for the variable or the peripheral variable assignments.

The variable reduction operator fp gives rise to a natural transformation (of

the same name) fp : M(1+ Id)⇒ M on the presented monad. Concretely, if p ∈

S∗(1+X), the map fp X : M(1+X)→MX acts on congruence classes of terms, i.e.,

178 Chapter 4. Effectful Process Calculi

fp u [p(u, x⃗)]EQ = [fp u p(u, x⃗)]EQ for any p(u, x⃗) ∈ S∗(1+X).

Examples

We conclude this section with a number of examples of iterative branching theories

and the monads they present.

Example 4.1.11. For a fixed finite set At of atomic tests, the theory of guarded algebras

is the pair ({0}+2At× Id2,GA), where GA consists of the equations

x+B x
(GA1)
= x x+At y

(GA2)
= x x+B y

(GA3)
= y+B̄ x

(x+B y)+C z
(GA4)
= x+B∩C (y+C z)

Here, +B is the binary operation associated with the set of atoms B⊆At, and B̄=At\B.

The theory of guarded algebras is presented by the monad ((⊥+ Id)At,λα.(−),∆∗),

where (λα.x)(α) = x and ∆∗(F)(α) = F(α)(α). The idea is that +B acts like an if-

then-else clause in an imperative program. This is reflected in a free guarded algebra

((⊥+X)At,ρX), where for a pair of maps h1,h2 : At→⊥+X ,

ρX(+B,h1,h2)(α) =

h1(α) if α ∈ B

h2(α) otherwise

Equipped with the variable reduction operator fp u t(u, x⃗) = t(0, x⃗), the theory of

guarded algebra is an iterative branching theory. This can be seen as follows: Given a

term t(u, x⃗)4, we can use (GA3) and (GA4) to find a decomposition of t(u, x⃗) consisting

of a term s(⃗x) (in which u is not free) and B ⊆ At such that GA ⊢ t(u, x⃗) = u+B s(⃗x).

Inductively, if ti(u, x⃗) =GA u+Bi si(⃗x) for i ∈ {1,2}, then given C ⊆ At and t(u, x⃗) =

t1(u⃗x)+C t2(u, x⃗),

GA ⊢ t1(u, x⃗)+C t2(u, x⃗) = (u+B1 s1(⃗x))+C (u+B2 s2(⃗x)) (ind. hyp.)

= u+B1∩C (s1(⃗x)+C (u+B2 s2(⃗x))) (GA4)

= u+B1∩C ((u+B2 s2(⃗x))+C̄ s1(⃗x)) (GA3)

= u+B1∩C (u+B2∩C̄ (s2(⃗x)+C̄ s1(⃗x))) (GA4)

4We will usually use p(⃗x),q(⃗x) for terms (p for polynomial), but in some examples this clashes with
standard notation and we use t (⃗x),s(⃗x) instead.

4.1. A Parametrized Family of Process Types 179

= (u+B1∩C u)+(B1∩C)∪(B2∩C̄) (s2(⃗x)+C̄ s1(⃗x)) (GA3,GA4)

= u+(B1∩C)∪(B2∩C̄) (s2(⃗x)+C̄ s1(⃗x))

Setting B = (B1 ∩C)∪ (B2 ∩ C̄) and s(⃗x) = s2(⃗x)+C̄ s1(⃗x) gives us such a decomposi-

tion. To see that the fixed-point equation (4.3) is satisfied, we compute using the

decomposition t(u, x⃗) =GA u+B s(⃗x),

GA ⊢ t(t(0, x⃗), x⃗) = t(0, x⃗)+B s(⃗x) (decomposition, substitution)

= (0+B s(⃗x))+B s(⃗x) (decomposition, congruence)

= 0+B (s(⃗x)+B s(⃗x)) (GA4)

= 0+B s(⃗x) (GA1)

= t(0, x⃗) (decomposition, substitution)

Thus, (GA, fp) is an iterative branching theory.

The theory of guarded algebras dates back to the algebras of if-then-else clauses

studied in [McC61; MN87; Man91; BT83; BÉ88]. In particular, guarded algebras are

examples of McCarthy algebras, introduced by Manes in [Man91].5

Example 4.1.12. The theory of pointed convex algebras [BSV21] is the pair ({0}+

[0,1]× Id2,CA), where CA consists of the equations

x⊕p x
(CA1)
= x x⊕1 y

(CA2)
= x x⊕p y

(CA3)
= y⊕p̄ x

(x⊕p y)⊕q z
(CA4)
= x⊕pq (y⊕ qp̄

1−pq
z)

Here, ⊕p is the binary operation with index p ∈ [0,1], p̄ = 1− p, and pq ̸= 1. This

theory presents the finite subprobability distribution monad (D(⊥+ Id),δ(−),∑),

which is defined to be

D(⊥+X) =

θ : X → [0,1]

∣∣∣∣∣∣ {x | θ(x)> 0} is finite

∑x∈X θ(x)≤ 1

5More information on the theory of guarded algebras can be found in Appendix A.

180 Chapter 4. Effectful Process Calculi

for any set X , and for any x ∈ X , θ ∈ D(⊥+X), and Θ ∈ D(⊥+D(⊥+X)),

δx(y) =

1 x = y

0 otherwise
∑(Θ)(θ) = ∑

y∈X
Θ(θ) ·θ(y)

This is witnessed by the transformation ρ that takes 0 to the trivial subdistribution

and computes the Minkowski sum

ρX(⊕p,θ ,ψ) = p ·θ +(1− p) ·ψ

for each p ∈ [0,1], θ ,ψ ∈ D(⊥+X). An iterative branching theory can be obtained

from the theory of pointed convex semilattices: Its effect on a finitely supported

subdistribution θ : X → [0,1] is given by

(fp u θ)(x) =

0 x = u or θ(u) = 1

θ(x)
1−θ(u) otherwise

Intuitively, it redistributes the weight of the variable u to the rest of the support.

This is indeed iterative: Given terms t(u, x⃗),s(u, x⃗), such that θ = [t(u, x⃗)]CA and

ψ = [s(u, x⃗)]CA, the subdistribution θ [ψ/u] := [t(s(u, x⃗), x⃗)]CA is given by

θ [ψ/u](z) =

θ(u) ψ(z)+θ(z) u ̸= z

θ(u) ψ(u) u = z

To check that the fixed-point equation (4.3) is satisfied, there are two cases to

consider. If θ(u)< 1, then

θ [fp u θ/u](z) =

θ(u) (fp u θ(z))+θ(z) u ̸= z

θ(u) (fp u θ(u)) u = z

=

θ(u)

(
1

1−θ(u)θ(z)
)
+θ(z) u ̸= z

θ(u) (0) u = z

4.1. A Parametrized Family of Process Types 181

=

θ(u)

1−θ(u)θ(z)+
1−θ(u)
1−θ(u)θ(z) u ̸= z

0 u = z

=

θ(u)+1−θ(u)

1−θ(u) θ(z) u ̸= z

0 u = z

=

1

1−θ(u)θ(z) u ̸= z

0 u = z

= fp u θ(z)

If θ(u) = 1, then fp u θ = 0 and θ(z) = 0 for z ̸= u. Thus,

θ [fp u θ/u](z) =

θ(u) (fp u θ(z))+θ(z) u ̸= z

θ(u) (fp u θ(u)) u = z
=

θ(u) (0)+0 u ̸= z

θ(u) (0) u = z
= 0

Remark 4.1.13. The branching theory corresponding to the convex algebra case

considered in [Sch22b] had fp u p(x, y⃗) = p(0, y⃗). This does not define an iterative

branching theory. In general, replacing the distinguished variable by a closed term in

S∗X produces a variable reduction operator that may not be iterative.

Example 4.1.14. The theory of pointed convex semilattices studied in [BSV21; VW06;

BSS17] combines the theory of semilattices and the theory of convex algebras. It has

both a binary operation + mimicking nondeterministic choice and the probabilistic

choice operations ⊕p indexed by p ∈ [0,1]. Formally, it is given by the pair (1+{+}×

Id2 +[0,1]× Id2,CS), where CS is the union of SL, CA, and the distributive law

(x+ y)⊕p z
(D)
= (x⊕p z)+(y⊕p z)

This theory presents the pointed convex powerset monad (C,ηC ,µC), where CX is the

set of finitely generated convex subsets of D(⊥+X) containing the zero distribution

δ⊥, and for x ∈ X and Q ∈ CCX ,

η
C(x) = {p ·δx | p ∈ [0,1]} µ

C(Q) =
⋃

Θ∈Q

{
∑

U∈C0X
Θ(U) ·θU

∣∣∣∣∣ (∀U ∈ CX) θU ∈U

}

182 Chapter 4. Effectful Process Calculi

The witnessing transformation ρC takes 0 to {δ⊥}, computes the set-wise Minkowski

sum in place of ⊕p, and interprets the + operation as the convex hull of the union

ρC
X (+,U,V) = Conv(U ∪V), where

Conv(U) =

{
n

∑
i=1

pi ·θi

∣∣∣∣∣ pi ∈ [0,1],θi ∈U, and ∑ pi ≤ 1

}

There is an intuitive variable reduction operator fp : C(1+ Id)⇒ C that turns the

theory of pointed convex semilattices into an iterative branching theory, essentially

given by lifting the iterative variable reduction operator from the theory of convex

algebra. More concretely, given a convex set U = Conv(r0δu,r1δu +θ1, . . . ,rnδu +θn)

where r1, . . . ,rn < 1 and θ1(u) = · · ·= θn(u) = 0,

fp u U = Conv
(

1
1− r1

θ1, . . . ,
1

1− rn
θn

)

This clearly defines a variable reduction operator. To see that it is iterative, begin

with the observation that substitution operates as follows: Given U = [t(u, x⃗)]CS and

V = [s(u, x⃗)]CS, the convex set U [V/u] := [t(s(u, x⃗), x⃗)]CS is given by

U [V/u] = Conv({θ [ψ/u] | θ ∈U and ψ ∈V})

Computing U [fp u U/u], we obtain

U [fp u U/u] = Conv({θ [ψ/u] | θ ∈U and ψ ∈ fp u U})

= Conv(r0(fp u U)∪{riψ +θi | 0 < i≤ n and ψ ∈ fp u U})

= Conv({riψ +θi | 0 < i≤ n and ψ ∈ fp u U})

The third equality follows from the identity

ri

(
1

1− ri
θi

)
+θi =

1
1− ri

θi

because the identity above tells us that every r0(1− ri)
−1θi in r0(fp u U) can be

written r0(ri(1− ri)
−1θi + θi). For a similar reason, this identity also implies that

fp u U ⊆ U [fp u U/u]. Now, to prove that fp u is an iterative variable reduction

operator, we need to establish that U [fp u U] ⊆ fp u U . Given ψ = ∑
n
j=1 p j

1
1−r j

θ j for

4.2. Specifications of Processes 183

∑ p j ≤ 1, observe that

riψ +θi =
n

∑
j=1

(
p j

ri

1− r j
θ j

)
+θi = ri ∑

i̸= j

(
p j

1
1− r j

θ j

)
+(1− ri(1− pi))

1
1− ri

θi

A bit of calculation reveals that since ∑ p j ≤ 1, ri ∑i ̸= j p j +1− ri(1− pi)≤ 1. Therefore,

riψ +θi ∈ Conv
(

r1
1

1− r1
θ1 +θ1, . . . ,rn

1
1− rn

θn +θn

)
= fp u U

and it follows that U [fp u U]⊆ fp u U . Thus, fp u U =U [fp u U/u], as desired.

Example 4.1.15. The theory of convex semilattices with top [MOW03; BSV19] is

the theory of pointed convex semilattices with two alterations: The Minkowski

sum ⊕p must have p ∈ (0,1), and there is an additional axiom x⊕r 0
(T)
= 0. The

theory of convex semilattices with top is written CS⊤. The monad presented by this

theory is (C⊤,ηC⊤ ,µC⊤), where C⊤X is the set of finitely generated convex subsets of

DX (including /0). Unlike the previous example, 0 represents /0 in the free convex

semilattice with top (hence, x⊕r 0 = 0). A similar variable reduction operator to the

one in the convex semilattices example turns CS⊤ into an iterative branching theory.

Remark 4.1.16. There are many examples of equational theories that do not admit

any iterative branching structure. One non-trivial example is the equational theory of

semigroups, which consists of a single binary operation · and the equation x · (y · z) =

(x · y) · z. The free semigroup is the non-empty list functor X 7→ X+. This does not

admit an iterative branching structure for the following reason: Suppose that fp were

an iterative variable reduction operator for this theory, and let X be a set with u,x ∈ X .

Then we could prove the equation fp u (u · x) = (fp u (u · x)) · x, by (4.3). No word in

X+ can satisfy the equation w = w · x (words have a finite length), so in particular

fp u (u · x) cannot satisfy this equation either. Thus, there is no iterative branching

structure on the equational theory of semigroups.

4.2 Specifications of Processes

Fix a branching theory (S,EQ, fp) presenting a monad (M,η ,µ) on Set, as well as

two sets Var and Act of output variables and action symbols. Recall the endofunctor

defined BM = M(Var+Act× Id) on Set.

Definition 4.2.1. An effectful transition system is a BM-coalgebra. An effectful process

184 Chapter 4. Effectful Process Calculi

is a state of an effectful transition system. An effectful process is finite if it is a state

in a finite effectful transition (sub)system.

In this section, we give a syntactic and uniformly defined specification system

for effectful processes along with an operational semantics inspired by Brzozowski’s

derivatives [Brz64]. We are primarily concerned with the specifications of finite

processes, and indeed the process terms we construct below denote processes with

finitely many states. The converse is also true, that every finite BM-coalgebra admits

a specification in the form of a process term, but we defer this result to Section 4.4

because of its relevance to the completeness theorem there.

Definition 4.2.2. Given a set Var of output variables, a set Act of action symbols, and

an algebraic signature S, the set Exp of process terms, is given by

e,ei ::= v | σ(e1, . . . ,en) | ae | µv e

where v ∈ Var, a ∈ Act, and σ ∈ Sn.

The process σ(e1, . . . ,en) is the process that branches into e1, . . . ,en using an n-ary

operation σ as the branching constructor. The expression ae denotes the process

that performs the action a and then proceeds with e. Following [Mil84], we use

output variables in one of two ways, depending on the context in which they appear:

A variable v appearing in e is free if it does not appear within the scope of µv and

bound otherwise. If v is free in e, then v denotes output v. Otherwise, v denotes a goto

statement that returns the process to the µv that binds v. Finally, as a convention,

we use the symbol 0 to denote any expression of the form fp u u, which essentially

denotes the deadlock process that takes no action.

Abstractly, process terms form the initial ΣM-algebra (Exp,ev), where ΣM is the

polynomial endofunctor defined by

ΣM = S+Var+Act× Id+{µ}×Var× Id

and the algebra map ev : ΣMExp→ Exp evaluates ΣM-terms.

4.2. Specifications of Processes 185

Small-step Semantics

Next we give a small-step semantics to process terms that is uniformly defined

for the process types in our parametrized family. Most algebraic theories lack a

familiar presentation, which ultimately prevents the corresponding semantics from

taking the traditional form of a set of inference rules describing transition relations.

Instead, we take an abstract approach by directly defining a BM-coalgebra structure

ε : Exp→ BMExp that mirrors the intuitive descriptions of the executions of process

terms above. The formal description of ε is summarized in Figure 4.2, although it

requires further explanation.

Before we see the formal definition of ε(µv e), in particular, let us stop to think

about how it might work. Intuitively, µv e carries out the process denoted by e

until it reaches an output v, at which point it ignores the output and loops back

to the beginning. If we imagine that a process term executes “from left-to-right”,

the behaviour just described can be captured by setting ε(µv e) = ε(e)[µv e//v],

where the substitution operator [µv e//v] replaces each pair (a,g) appearing in ε(e)

with (a,g[e/v]), and [e/v] is the syntactic substitution operator that replaces free

instances of the variable v in g with µv e (these operators are defined formally in

Definition 4.2.4). In other words, µv e repeatedly performs all the actions e performs.

However, this only accurately describes recursion in v when in every branch of

its execution, e performs an action before outputting v. For example, the process µv v

never outputs v and never performs any action at all, even though ε(v)[µv v//v] =

ε(v) = “output v”. We deal with this as follows: If an output v is immediately reached

by a branch of e, then we iterate out the variable v in the term representation of ε(e)

before we apply [µv e//v]. Formally, we set ε(µv e) = fp v ε(e)[µv e//v], where fp v is

the iterative variable reduction operator. For example, the term µv v represents an

S-term with no free variables, so ε(µv v) = fp v ε(v)[µv v//v] = fp v v = 0.

In Definition 4.2.3 and Definition 4.2.4, we formally define the substitution

operators necessary for giving a precise description of ε.

Definition 4.2.3. Let e ∈ Exp. Write fv(e) for the set of variables that appear free in

a process term e. The set of variables guarded in e is written gv(e) and defined

gv(v) = Var \ v gv(σ(e1, . . . ,en)) =
⋂
i≤n

gv(ei)

186 Chapter 4. Effectful Process Calculi

gv(ae) = fv(e) gv(µv e) = {v}∪gv(e)

If v /∈ gv(e), then v appears unguarded in e.

Note that if v is not free in e, then v ∈ gv(e).

We allow for recursion in unguarded variables by baking the variable reduction

operator into the operational semantics. Formally, this requires us to define syntactic

and guarded syntactic substitution operators.

Definition 4.2.4. Given a process term g and a variable v ∈ Var, the syntactic substi-

tution of v for g is the partial function [g/v] : Exp ⇀ Exp defined

u[g/v] =

g u = v

u otherwise
σ(e1, . . . ,en)[g/v] = σ(e1[g/v], . . . ,en[g/v])

(ae)[g/v] = ae[g/v] (µu e)[g/v] =

µu e u = v

µu e[g/v] u ̸= v and u /∈ fv(g)

undefined otherwise

Analogously, the guarded syntactic substitution of v for g is the partial S-algebra

homomorphism [g//v] : BMExp ⇀ BMExp defined recursively by

u[g//v] = u (a, f)[g//v] = (a, f [g/v])

σ(p1, . . . , pn)[g//v] = σ(p1[g//v], . . . , pn[g//v])

Syntactic substitution replaces free instances of v with g without binding variables in

g, and guarded syntactic substitution substitutes instances of guarded variables but

leaves unguarded variables alone.

Both syntactic substitution operators are only partially defined. The following

lemma characterizes expressions in the domain of each substitution operator.

Lemma 4.2.5. Let e,g ∈ Exp and v ∈ Var. Then e[g/v] and ε(e)[g//v] are defined if and

only if no variable bound in e appears free in g.

We now have all of the formal notions we need to give a precise definition of the

small-step semantics of Exp.

4.2. Specifications of Processes 187

ε(v) = v

ε(ae) = (a,e)

ε(σ(e1, . . . ,en)) = σ(ε(e1), . . . ,ε(en))

ε(µv e) = fp v ε(e)[µv e//v]

Figure 4.2: Operational semantics of process terms. Here, v ∈ Var, a ∈ Act, and e,ei ∈ Exp.

Definition 4.2.6. Given an iterative branching theory (S,EQ, fp) presenting a monad

(M,η ,µ), the small-step semantics of its corresponding set of process terms Exp is the

BM-coalgebra (Exp,ε) defined in Figure 4.2.

Formally, ε assigns to each process term e an EQ-congruence class ε(e) of

terms from S∗(Var+Act×Exp). A term from S∗(Var+Act×Exp) is a combination of

variables v and transition-like pairs (a,ei), so there is often only a small conceptual

leap from the coalgebra structure ε to a more traditional representation of transitions

as decorated arrows. We provide the following examples as illustrations of this

phenomenon, as well as the specification languages and operational semantics of

terms defined above.

Example 4.2.7. The algebra of control flows, or ACF, is obtained from the iterative

branching theory of guarded algebras of Example 4.1.11 and M = (⊥+ Id)At. To

match with the notation in Chapter 3, we will temporarily use p,q for actions (i.e.,

Act = Σ from Chapter 3) and G = BM. Given a structure map β : X → GX and B⊆ At,

write x B|p−−→ y if β (x)(α) = (p,y) for all α ∈ B, and x B
=⇒ v if β (x)(α) = v for all α ∈ B.

The operational semantics returns the constant map λα.v given a variable v ∈ Var

and interprets conditional choice as guarded union.

u e f v
B | p1

B̄ | p2

B̄ B

e = µw (p1(v+B p2w)+B u)

f = v+B p2e

ε(e) = ε(p1(v+B p2w)+B u)[e//w]

= (λα.(p1,v+B p2w)+B λα.u)[e//w]

= (λα.(p1,v+B p2w))[e//w]+B λα.u

= λα.(p1,v+B p2e)+B λα.u

= λα.(p1, f)+B λα.u

Example 4.2.8. The algebra of probabilistic actions, or APA, is obtained from the

iterative branching theory of pointed convex algebras in Example 4.1.12 and with M =

D(⊥+ Id). For a structure map β : X → BD(1+Id)X , write x k|a−→ y when β (x)(a,y) = k

and e k
=⇒ v when β (e)(v) = k. The operational semantics returns the Dirac distribution

188 Chapter 4. Effectful Process Calculi

δv for v ∈ Var and interprets probabilistic choice as the Minkowski sum.

w e u u
1
2 | a1

1
3

1
6 | a2

1

e = µv (a1u⊕ 1
2
(a2v⊕ 1

3
w))

ε(e) = ε(a1u⊕ 1
2
(a2v⊕ 1

3
w))[e//v]

=

(
1
2

δ(a1,u)+
1
6

δ(a2,v)+
1
3

δw

)
[e//v]

=
1
2

δ(a1,u)+
1
6

δ(a2,e)+
1
3

δw

Example 4.2.9. The algebra of nondeterministic probabilistic actions, or ARB, is ob-

tained from the theory of pointed convex semilattices of Example 4.1.14. For a

structure map β : X → BCX , write x
k | a
◦ y to mean there is a θ ∈ β (x) such that

θ(a,y) = k, and x k
=⇒ v to mean there is a θ ∈ β (x) with θ(v) = k. The operational

semantics returns ηC(v) given v ∈ Var, interprets nondeterministic choice as convex

union, and replaces probabilistic choice with Minkowski sum.

◦ e ◦

ww

1 | a2
1
3 | a1

2
3 | a2

1

e = µv ((a1v⊕ 1
3

a2w)+a2v)

ε(e) = ε((a1v⊕ 1
3

a2w)+a2v)[e//v]

= Conv{ε(a1v⊕ 1
3

a2w),δ(a2,v)}[e//v]

= Conv
{

1
3

δ(a1,v)+
2
3

δ(a2,w),δ(a2,v)

}
[e//v]

= Conv
{

1
3

δ(a1,e)+
2
3

δ(a2,w),δ(a2,e)

}

4.3 Behavioural Equivalence and the Final Coalgebra

It follows from general considerations that the functor BM admits a final coalgebra

(see Definition 2.5.1): Since M is constructed from a finitary algebraic signature, the

coalgebraic signature BM is finitary (a.k.a. bounded), meaning it preserves directed

colimits [AR94]. Every finitary functor B admits a final coalgebra [Rut00; Adá05],

so BM admits a final coalgebra. In particular, the universal property of the final

BM-coalgebra produces the coalgebra homomorphism !ε : (Exp,ε)→ (Z,ζ), called the

operational semantics.

In this section, we relate the operational semantics, arising from the coalgebra

structure on Exp, to a denotational semantics induced by a suitable algebra structure

on the domain of process behaviours, elements of the final BM-coalgebra.

Definition 4.3.1 (Operational Semantics [TR98]). Given e ∈ Exp, the behaviour !ε(e)

is called the final (coalgebra) semantics, or operational semantics of e.

4.3. Behavioural Equivalence and the Final Coalgebra 189

For example, the final BPω
-coalgebra consists of bisimulation equivalence classes

of finite and infinite labelled trees of a certain form [Bar93]. In this setting, (Exp,ε)

is a labelled transition system and the operational semantics !ε constructs a tree from

a process term by unrolling. Intuitively, this captures the behaviour of a specification

by encoding all possible actions and outputs at each time-step in its execution.

Denotational Semantics

In addition to forming the state space of the final BM-coalgebra, the set of process

behaviours also carries the structure of a ΣM-algebra (Z,γ). The construction of

this ΣM-algebra structure requires coalgebraic analogues of syntactic and guarded

syntactic substitution from Section 4.2.

Definition 4.3.2. For a given behaviour s ∈ Z and a variable v ∈ Var, the behavioural

substitution of s for v is the map {s/v} : Z→ Z defined corecursively by the identity

ζ (t{s/v}) =

ζ (s) ζ (t) = v

u ζ (t) = u ̸= v

(a,r{s/v}) ζ (t) = (a,r)

σ(ζ (t1{s/v}), . . . ,ζ (tn{s/v})) ζ (t) = σ(ζ (t1), . . . ,ζ (tn))

(4.4)

for any t ∈ Z. In other words, we define the coalgebra structure k : Z +Z×{•} →

BM(Z +Z×{•}), where k(t) = ζ (t) and

k(t•) =

ζ (s) ζ (t) = v

u ζ (t) = u ̸= v

(a,r•) ζ (t) = (a,r)

σ(k(t1•), . . . ,k(tn•)) ζ (t) = σ(ζ (t1), . . . ,ζ (tn))

The identity (4.4) above amounts to the statement that {s/v} is the composition

of the injection Z×{•} ↪→ Z +Z×{•} with the unique coalgebra homomorphism

!k : (Z +Z×{•},k)→ (Z,ζ).

The second form of substitution we will make use of is guarded behavioural

substitution, constructed in analogy with guarded syntactic substitution.

190 Chapter 4. Effectful Process Calculi

Definition 4.3.3. Given s,v, the guarded behavioural substitution operator

{s//v} : BMZ→ BMZ is defined recursively by

u{s//v}= u (a,r){s//v}= (a,r{s/v})

σ(r1, . . . ,rn){s//v}= σ(r1{s//v}, . . . ,rn{s//v})

where u ∈ Var, a ∈ Act, and r,ri ∈ Z for i≤ n.

We define the ΣM-algebra structure (Z,γ) using a certain system of behavioural

differential equations [Rut98]. This is the content of Theorem 4.3.4 below.

Theorem 4.3.4. There is a unique ΣM-algebra structure γ : ΣMZ→ Z such that

ζ (γ(v)) = v

ζ (γ(a, t)) = (a, t)

ζ (γ(σ , t1, . . . , tn)) = σ(ζ (t1), . . . ,ζ (tn))

ζ (γ(µv, t)) = fp v ζ (t){γ(µv, t)//v}
(4.5)

Above, v ∈ Var, a ∈ Act, t, ti ∈ Z for i≤ n, and σ is an n-ary operation from S.

Proof sketch. Recall that ΣMZ = SZ+Var+Act×Z+{µ}×Var×Z, where the compo-

nents listed correspond to the algebraic operations in S, the output variables, prefixing

by an action, and recursion in a variable respectively. By Lambek’s lemma [Lam68],

ζ : Z → BMZ is a bijection, so the first three equations in (4.5) determine a map

γbase : SZ +Var +Act× Z → Z. To obtain γ = [γbase,γrec], we are left with defining

γrec : {µ}×Var×Z→ Z. The formal construction of the recursion operations γrec is the

subject of Section 4.3.1. Roughly, the behaviour γ(µv, t) is the EQ-equivalence class

of a certain coterm (i.e., infinite syntax tree) for the functor S∗(Var+Act× Id).

Given a ∈ Act, t, t1, . . . , tn ∈ Z, σ ∈ Sn, we typically write at for γ(a, t), σ(t1, . . . , tn)

for γ(σ , t1, . . . , tn), and µv t for γ(µv, t).

Example 4.3.5. To see how the recursion operator γ(µv,−) acts on behaviours, recall

from Section 3.1 that the final (2+ Σ× Id)At-coalgebra is isomorphic to a set of

behaviour trees, partial functions of the form t : At+ ⇀ 2+Σ (where Σ = Act here).

For similar reasons, the final BM-coalgebra for M = (⊥+ Id)At—like in Example 4.2.7—

is isomorphic to a set of partial maps t : At+ ⇀⊥+Var+Σ, also visualized as trees6.

Suppose At = {α1,α2,α3}. Below is a visualization of the behaviour t of the expression

6Compare also with the construction of a final coalgebra consiting of coterms in Section 4.3.1

4.3. Behavioural Equivalence and the Final Coalgebra 191

e = pv+α1 (v+α2 u), a visualization of the behaviour fp v t defined by ζ (fp v t) =

fp v ζ (t), and a visualization of the behaviour γ(µv, t).

t

•

p v u

v v v

α1 α2 α3

α1 α2 α3

fp v t

•

p u

v v v

α1 α3

α1 α2 α3

µv t

•

p u

p u

α1 α3

α1 α3

Above, the dashed line indicates that the two subtrees are isomorphic. Notice how the

iterative variable reduction operator removes the output v command from only the

initial branching of t, whereas there are no instances of output v in µv t. Essentially,

the recursion operator µv corecursively pastes the initial α of the tree fp v t wherever

it sees a subtree of t with a leaf labelled v.

The structure (Exp,ev) is the initial ΣM-algebra, so there is a unique algebra

homomorphism ⌊⌈−⌋⌉ : (Exp,ev)→ (Z,γ).

Definition 4.3.6 (Denotational Semantics [Gog+77]). The behaviour ⌊⌈e⌋⌉ is called

the initial (algebra) semantics, or denotational semantics of e.

The equations in (4.5) characterizing the algebra structure γ : ΣMZ→ Z of (Z,γ)

can be seen as a rehashing of the programming constructs of the language Exp that

mimics the operational semantics of process terms. The basic constructs are the

content of the first three equations in (4.5): Output variables are evaluated so as

to behave like the variables of (Exp,ε), the behaviour at performs a and moves on

to t, and σ(t1, . . . , tn) branches into the behaviours t1, . . . , tn with additional structure

determined by the operation σ .

Behavioural and guarded behavioural substitution interact well with syntactic

substitution, as the following two lemmas show. The proof of the first of the two

lemmas is long, so for the sake of presentation it has been given its own Section 4.3.2.

Lemma 4.3.7. For any e,g ∈ Exp such that no free variable of g appears bound in e,

and for any v ∈ Var, ⌊⌈e[g/v]⌋⌉= ⌊⌈e⌋⌉{⌊⌈g⌋⌉/v}.

Proof. See Section 4.3.2.

192 Chapter 4. Effectful Process Calculi

ΣMExp Exp BMExp

ΣMZ Z BMZ

ΣM(⌊⌈−⌋⌉) ΣM(!ε) ⌊⌈−⌋⌉ !ε BM(⌊⌈−⌋⌉) BM(!ε)

γ ζ

ev ε

Figure 4.3: A diagram of Theorem 4.3.9.

The most important property of the behaviour γ(µv, t) is that it is the unique

solution to ζ (r) = fp v ζ (t){r//v} in the indeterminate r.

Lemma 4.3.8. Let ⌊⌈−⌋⌉ be the unique algebra homomorphism (Exp,ev)→ (Z,γ). For

any g ∈ Exp, p ∈ BMExp, and v ∈ Var, BM(⌊⌈−⌋⌉)(p[g//v]) = BM(⌊⌈−⌋⌉)(p){⌊⌈g⌋⌉//v}.

Proof. By induction on p. In the base case, we have

BM(⌊⌈−⌋⌉)(u[g//v]) = BM(⌊⌈−⌋⌉)(u) = u = u{⌊⌈g⌋⌉//v}= BM(⌊⌈−⌋⌉)(u){⌊⌈g⌋⌉//v}

for u ∈ Var. Given e ∈ Exp and a ∈ Act,

BM(⌊⌈−⌋⌉)((a,e)[g//v]) = BM(⌊⌈−⌋⌉)((a,e[g/v]))

= (a,⌊⌈e[g/v]⌋⌉)

= (a,⌊⌈e⌋⌉{g/v}) (Lemma 4.3.7)

= (a,⌊⌈e⌋⌉){g//v}

= BM(⌊⌈−⌋⌉)((a,e)){⌊⌈g⌋⌉//v}

The inductive step is straightforward.

Both the operational semantics and the denotational semantics give intuitively

correct meanings to process terms. As one might hope, the two coincide. In other

words, the final coalgebra semantics given with respect to operational rules in Exp

is equal to the initial algebra semantics given with respect to the programming

constructs in Z.

Theorem 4.3.9. For any process term e ∈ Exp, we have !ε(e) = ⌊⌈e⌋⌉.

Proof. We would like to check that the whole of the diagram in Figure 4.3 commutes.

By the universal property of the final coalgebra, it suffices to check that ⌊⌈−⌋⌉ is

4.3. Behavioural Equivalence and the Final Coalgebra 193

a coalgebra homomorphism—that for any e ∈ Exp, ζ (⌊⌈e⌋⌉) = BM(⌊⌈−⌋⌉) ◦ ε(e). This

equation can be derived inductively on e. Before we proceed, observe that the action

of BM on ⌊⌈−⌋⌉ is the extension of the substitution (a,e) 7→ (a,⌊⌈a⌋⌉) to the unique

S-algebra homomorphism BMExp→ BMZ that maps output variables to themselves.

For the base case, let v ∈ Var and observe that by (4.5) and the fact that ⌊⌈−⌋⌉ is

a Σ-algebra homomorphism,

ζ (⌊⌈v⌋⌉) = ζ ◦ γ(v) = v = BM(⌊⌈−⌋⌉)◦ ε(v)

For the inductive step, assume that for g ∈ {e,ei}, ζ (⌊⌈g⌋⌉) = BM(⌊⌈−⌋⌉)◦ ε(g). Given

a ∈ Act, we have

ζ (⌊⌈ae⌋⌉) = ζ ◦ γ(a,⌊⌈e⌋⌉) (⌊⌈−⌋⌉ alg. homom.)

= (a,⌊⌈e⌋⌉) ((4.5))

= BM(⌊⌈−⌋⌉)(a,e) (def BM.)

= BM(⌊⌈−⌋⌉)◦ ε(ae) (Figure 4.2)

Given σ ∈ Sn, we have

ζ (⌊⌈σ(e1, . . . ,en)⌋⌉) = ζ ◦⌊⌈−⌋⌉◦ ev(σ ,e1, . . . ,en)

= ζ ◦ γ ◦ΣM(⌊⌈−⌋⌉)(σ ,e1, . . . ,en) (⌊⌈−⌋⌉ alg. homom.)

= ζ ◦ γ(σ ,⌊⌈e1⌋⌉ , . . . ,⌊⌈en⌋⌉)

= σ(ζ (⌊⌈e1⌋⌉), . . . ,ζ (⌊⌈en⌋⌉)) ((4.5))

= σ(BM(⌊⌈−⌋⌉)◦ ε(e1), . . . ,BM(⌊⌈−⌋⌉)◦ ε(en)) (induct. hyp.)

= BM(⌊⌈−⌋⌉)(σ(ε(e1), . . . ,ε(en)))

= BM(⌊⌈−⌋⌉)◦ ε(σ(e1, . . . ,en)) (Figure 4.2)

Finally, for v ∈ Var,

ζ (⌊⌈µv e⌋⌉) = ζ ◦⌊⌈−⌋⌉◦ ev(µv,e)

= ζ ◦ γ ◦ΣM(⌊⌈−⌋⌉)(µv,e) (⌊⌈−⌋⌉ alg. homom.)

= ζ ◦ γ(µv,⌊⌈e⌋⌉)

194 Chapter 4. Effectful Process Calculi

= fp v ζ (⌊⌈e⌋⌉){γ(µv,⌊⌈e⌋⌉)//v} (Figure 4.2)

= fp v ζ (⌊⌈e⌋⌉){⌊⌈µv e⌋⌉//v}

= fp v (B(⌊⌈−⌋⌉)◦ ε(e)){⌊⌈µv e⌋⌉//v} (induct. hyp.)

= B(⌊⌈−⌋⌉)(fp v ε(e)){⌊⌈µv e⌋⌉//v} (nat. of fp)

= B(⌊⌈−⌋⌉)(fp v ε(e)[µv e//v]) (Lemma 4.3.8)

= B(⌊⌈−⌋⌉)◦ ε(µv e)

As a consequence of Theorem 4.3.9, we write ⌊⌈−⌋⌉ in place of !ε and simply refer

to ⌊⌈e⌋⌉ as the semantics of e.

4.3.1 The Proof of Theorem 4.3.4

This section is dedicated to the proof of Theorem 4.3.4, which says that there is a

unique ΣM-algebra structure γ : ΣMZ→ Z satisfying the equations in (4.5).

ζ (γ(v)) = v ζ (γ(σ , t1, . . . , tn)) = σ(ζ (t1), . . . ,ζ (tn))

ζ (γ(a, t)) = (a, t) ζ (γ(µv, t)) = fp v ζ (t){γ(µv, t)//v}
(4.5)

We already saw in the text below Theorem 4.3.4 that we could break down the

construction of such a γ into γ = [γbase,γrec], where γbase : SZ +Var+Act×Z→ Z and

γrec : {µ}×Var×Z→ Z. By Lambek’s lemma [Lam68], ζ is invertible. This implies

that the unique map γbase satisfying the first three equations of (4.5) is given by

γbase(v) = ζ
−1(v) γbase(σ , t1, . . . , tn) = ζ

−1(σ(ζ (t1), . . . ,ζ (tn)))

γbase(a, t) = ζ
−1(a, t)

Comparing this with (4.5), we are left with constructing the map γrec and showing

that it is the unique map satisfying the last of the four identities in (4.5).

Lemma 4.3.10. There is at most one r ∈ Z satisfying ζ (r) = fp v ζ (t){r//v}.

Proof. We begin by showing that the relation

R = {(r{s1/v},r{s2/v}) | ζ (si) = fp v ζ (t){si//v}, i ∈ {1,2}}

is a bisimulation on (Z,ζ). To this end, we define a coalgebra structure ρ : R→ BMR

4.3. Behavioural Equivalence and the Final Coalgebra 195

by induction on ζ (r) and show that the projection maps π1,π2 : R→ Z are coalgebra

homomorphisms. Let ζ (t) = p(v, u⃗,(a1, t1), . . . ,(an, tn)). If ζ (r) = v, then r{si/v} = si

and we have

ζ (si) = fp v p(v, u⃗,(a1, t1{si/v}), . . . ,(an, tn{si/v}))

Thus, we set

ρ((r{s1/v},r{s2/v}))

= fp v p(v, u⃗,(a1,(t1{s1/v}, t1{s2/v})), . . . ,(an,(tn{s1/v}, tn{s2/v})))

in this case, and deduce

BM(πi)◦ρ((r{s1/v},r{s2/v}))

= BM(πi)(fp v p(v, u⃗,(a1,(t1{s1/v}, t1{s2/v})), . . . ,(an,(tn{s1/v}, tn{s2/v})))) (def. ρ)

= fp v p(v, u⃗,(a1, t1{si/v}), . . . ,(an, tn{si/v})) (def. BM)

= fp v ζ (t){si//v}

= ζ (si) (assm. si)

= ζ (r{si/v}) (ζ (r) = v)

= ζ ◦πi((r{s1/v},r{s2/v}))

If ζ (r) = u ̸= v, then we set ρ((r{s1/v},r{s2/v})) = u. If ζ (r) = σ(ζ (r1), . . . ,ζ (rn)) and

BM(πi)◦ρ((r1{s1/v},r1{s2/v})) = ζ (r1{si/v}), we set

ρ((r{s1/v},r{s2/v})) = σ(ρ((r1{s1/v},r1{s2/v})), . . . ,ρ((rn{s1/v},rn{s2/v})))

and deduce

BM(πi)◦ρ((r{s1/v},r{s2/v}))

= BM(πi)
(
σ(ρ((r1{s1/v},r1{s2/v})), . . . ,ρ((rn{s1/v},rn{s2/v})))

)
(def. ρ)

= σ(BM(πi)◦ρ((r1{s1/v},r1{s2/v})), . . . ,BM(πi)◦ρ((rn{s1/v},rn{s2/v})))

(BM(πi) an alg. hom.)

= σ(ζ (r1{si/v}), . . . ,ζ (rn{si/v})) (ind. hyp.)

196 Chapter 4. Effectful Process Calculi

= ζ (r{si/v}) (def. {−/v})

= ζ ◦πi((r{s1/v},r{s2/v}))

Thus, BM(πi) ◦ ρ = ζ ◦ πi, so R is a bisimulation. By finality of (Z,ζ), R ⊆ ∆Z, so

r{s1/v} = r{s2/v} for any (r{s1/v},r{s2/v}) ∈ R. In particular, if r = ζ−1(v), then

s1 = s2. Hence, there is at most one r such that ζ (r) = fp v ζ (t){r//v}.

We are now left with the task of showing that a behaviour s satisfying ζ (s) =

fp v ζ (t){s//v} exists. It clarifies the situation greatly to start by describing an

analogous operator on a different final coalgebra, namely the final coalgebra for the

functor BS∗ = S∗(Var+Act× Id). We start by equipping this final coalgebra with a

complete metric, which will allow us to obtain recursion in v as a certain limit.

Up to isomorphism, the final S∗(Var + Act × Id)-coalgebra consists of the

set Γ of finite and infinite ordered trees with a particular decoration7: Intu-

itively, leaves of the tree are labelled either with closed S-terms or variables

from Var, and each interior node with a list of m children is labelled by a term

p(⃗v,(a1,1), . . . ,(am,m)) ∈ S∗(Var+Act×N). The coalgebra structure β : Γ→ BS∗Γ on

these trees assigns a tree t with root node labelled p(v1, . . . ,vn,(a1,1), . . . ,(am,m)) to

the term β (t) = p(v1, . . . ,vn,(a1, t1), . . . ,(am, tm)), where ti is the ith child of t. All of

this can be captured formally as follows.

Definition 4.3.11. Define step(p(⃗v,(a1,x1), . . . ,(an,xn))) = {x1, . . . ,xn} for any p ∈

BS∗X . A coterm is a partial function t : N∗⇀ BS∗N such that for any w ∈ N∗,

1. There is an n ∈ N such that step(t(w)) = {1, . . . ,n}.8

2. ε ∈ dom(t), where ε is the empty word.

3. If w ∈ dom(t) and n ∈ step(t(w)), then wn ∈ dom(t).

4. If wn ∈ dom(t), then w ∈ dom(t).

The set of all coterms is denoted Γ. The coalgebra structure β : Γ→ BS∗Γ is defined

β (t) = p(⃗v,(a1, t1), . . . ,(an, tn)) when t(ε) = p(⃗v,(a1,1), . . . ,(an,n)) and

dom(ti) = {w ∈ N∗ | iw ∈ dom(t)} ti = λw.t(iw)

7We are essentially going to follow [Acz+03] for the coalgebraic perspective. Explicit constructions
on trees are inspired by [Cou83]

8In case n = 0, step(t(w)) = /0.

4.3. Behavioural Equivalence and the Final Coalgebra 197

for i ∈ {1, . . . ,n}. That is, β (t) = p(⃗v,(a1,λw.t(1w)), . . . ,(an,λw.t(nw))).

Example 4.3.12. For S = {+}× Id2, the figure below is the coterm t ∈ Γ such that

t(ε) = v1 +((a1,1)+(a1,2)), t(1) = v2, t(2) = v1 +(a1,1), and t(2 1) = v3.

v1 +((a1,1)+(a1,2))

v2 v1 +(a1,1)

v3

β (t) = v1 +((a1, v2)+(a1,
v1 +(a1,1)

v3

)) (4.6)

Intuitively, the tree above corresponds to the process term v1 +(a1v2 +a1(v1 +a1v3)).

For an infinite example, consider the tree below.

v1 +((a1,1)+(a1,2))

v1 +((a1,1)+(a1,2)) v1 +(a1,1)

v3

β (t) = v1 +((a1, t)+(a1,
v1 +(a1,1)

v3

))

Above, the dashed lines indicate that two subtrees are isomorphic. Intuitively, this

coterm corresponds to µv2 (v1 +(a1v2 +a1(v1 +a1v3))).

Lemma 4.3.13. The structure (Γ,β) is a final BS∗-coalgebra.

Given a coalgebra δ : X → BS∗X , the coterm !δ (x) corresponding to a state x ∈ X

is given by unrolling. That is, if δ (x) = p(⃗u,(a1,x1), . . . ,(an,xn)), then !δ (x) is the

coterm whose root is labelled by p(⃗u,(a1,1), . . . ,(an,n)), and whose children are the

coterms !δ (x1), . . . , !δ (xn).

Proof. Let (X ,δ) be a BS∗-coalgebra. Following the intuition above, we define

!δ : X → Γ formally as follows. Let x ∈ X and suppose δ (x) = p(⃗u,(a1,x1), . . . ,(an,xn)).

We inductively define !δ (x)(ε) = p(⃗v,(a1,1), . . . ,(an,n)) for the empty word, and for

i ∈ {1, . . . ,n} and w ∈ dom(!δ (xi)), !δ (x)(iw) = !δ (xi)(w). The map !δ is a coalgebra

homomorphism because

BS∗(!δ)◦δ (x) = BS∗(!δ)(p(⃗v,(a1,x1), . . . ,(an,xn)))

= p(⃗v,(a1, !δ (x1)), . . . ,(an, !δ (xn)))

= p(⃗v,(a1,λw.!δ (x)(1w)), . . . ,(an,λw.!δ (x)(nw)))

198 Chapter 4. Effectful Process Calculi

= β ◦ !δ (x)

For uniqueness, suppose h : (X ,δ)→ (Γ,β) is any other coalgebra homomorphism. We

show by induction on w∈N∗ that w∈ dom(h(x)) iff w∈ dom(!δ (x)) and that h(x)(w) =

!δ (x)(w). For ε, this amounts to observing that since δ (x) = p(⃗v,(a1,x1), . . . ,(an,xn)),

we must have

h(x)(ε) = p(⃗v,(a1,1), . . . ,(an,n)) = !δ (x)(ε)

For the inductive step, assume that w ∈ dom(h(y)) iff w ∈ dom(!δ (y)) and assume that

h(y)(w) = !δ (y)(w) for all y ∈ X . Let i ∈ {1, . . . ,n}, and observe that iw ∈ dom(h(x))

and iw ∈ dom(!δ (x)), and that for no other i ∈N we find either iw ∈ dom(h(x)) or iw ∈

dom(!δ (x)). Thus, to finish the proof, simply observe that the induction hypothesis

now tells us h(x)(iw) = h(xi)(w) = !δ (xi)(w) = !δ (x)(iw).

The construction of µv t

Recall that our primary goal in this section is to formally construct the behaviour

µv t. We begin with a construction of an analogous operator µv, of the same name,

on coterms. If t is a coterm, then the coterm µv t can be obtained as a limit with

respect to a certain metric d on coterms. Our next step is to define this metric d.

Write N≤n for the set of words w∈N∗ such that the length |w| of w is at most n. We

define the depth-n restriction of a coterm t ∈ Γ to be t|n, where dom(t|n) = dom(t)∩N≤n

and t|n(w) = t(w) for any w ∈ dom(t|n).

Definition 4.3.14. The coterm metric is the map d : Γ×Γ→ [0,1] defined as follows:

For s, t ∈ Γ,

d(s, t) = inf{2−(n+1) | t|n = s|n}

if there is an n such that t|n = s|n, and otherwise d(s, t) = 1.

Remark 4.3.15. The metric d defined above has been obtained by instantiating

a more general construction of a complete metric on a final coalgebra due to

Barr [Bar93] (see also [Adá03] and the much earlier study of complete metric

spaces of trees [AN80]). Barr constructs an analogue of the metric d on the final

coalgebra of any bicontinuous functor on Set using its final sequence, an ωop-sequence

with a final coalgebra as a limit. The functor BS∗ is bicontinuous, so Barr’s general

4.3. Behavioural Equivalence and the Final Coalgebra 199

construction applies. We spell out the metric d and prove the required properties of

d concretely to make the chapter as self-contained as possible.

Lemma 4.3.16. The coterm metric satisfies the following property: For any s, t ∈ Γ,

d(s, t) =
1
2

max{d(s j, t j) | j ≤ m}

if β (s) = p(⃗u,(a1,s1), . . . ,(an,sm)) and β (t) = p(⃗u,(a1, t1), . . . ,(an, tm)), and otherwise

d(s, t) = 1. Furthermore, the pair (Γ,d) is a complete metric space.

Proof. If β (s) = p(⃗v,(a1,s1), . . . ,(an,sn)) and β (t) = p(⃗v,(a1, t1), . . . ,(an, tn)), then

t|n+1 = s|n+1 iff for any i≤ m, ti|n = si|n. Thus, d(s, t) = 1
2 max{d(s j, t j) | j ≤ m}.

The space (Γ,d) is complete because in any Cauchy sequence of coterms {ti}i∈N,

there is a subsequence {tki}i∈N such that for any i ∈ N, the coterms tki and tki+1 must

agree on all words of length at most i. This subsequence is obtained by observing that

since {ti}i∈N is Cauchy, given any i ∈ N, there is a ki ∈ N such that for any j1, j2 ≥ ki,

d(t j1 , t j2) ≤ 2−(i+1). For any such j1, j2, t j1 |i = t j2 |i. The limit of {ti}i∈N is the unique

coterm t such that t|i = tki |i for all i ∈ N.

Given an s∈Γ and v∈Var, we use finality of (Γ,β) to corecursively define the sub-

stitution operator (−)[s/v] : Γ→ Γ as follows: Given β (t) = p(v, u⃗,(a1, t1), . . . ,(an, tn)),

β (t[s/v]) = p(β (s), u⃗,(a1, t1[s/v]), . . . ,(an, tn[s/v])) (4.7)

Note the similarity to the definition of behavioural substitution (Definition 4.3.2).

Also note that we clearly have t[v/v] = t.

The substitution t[s/v] amounts to replacing each v appearing in some label of a

node in t with the root label of s (and then renumbering), and then inserting the list

of children of s in the appropriate places in the list of children of t.

Example 4.3.17. If t is the coterm in (4.6) and s is the third child of t, then t[s/v1] is

the coterm below:
(v1 +(a1,1))+((a1,2)+(a1,3))

v3 v2 (v1 +(a1,1))+(a1,2)

v3 v3

200 Chapter 4. Effectful Process Calculi

The label of the root of t is v1 +((a1,1)+(a1,2)). Replacing v1 with the label of the

root of s gives (v1 +(a1,1))+((a1,1)+(a2,2)). Renumbering so that the step indices

correspond to the children gives (v1 +(a1,1))+((a1,2)+(a2,3)), and appending the

list of children of s to the beginning of the list of children of t gives the root node

above and its children. Repeating this for the third child gives the coterm above.

For t,s1,s2 ∈ Γ, it is straightforward to see that d(t[s1/v], t[s2/v]) ≤ d(s1,s2). In-

deed, there is a minimal length n for which the variable v appears free in t(w) with

|w| = n. If d(s1,s2) = 2−k, then d(t[s1/v], t[s2/v]) ≤ 2−(n+k), since t[s1/v](u) = t(u) =

t[s2/v](u) for every word u with |u|< n. This means that t[−/v] is nonexpanding. The

next lemma tells us that substituting into certain coterms is a contraction by 1
2 .

Lemma 4.3.18. Let t ∈ Γ, and assume that v is not free in β (t). Then for any s1,s2 ∈ Γ,

d(t[s1/v], t[s2/v])≤ 1
2

d(s1,s2)

Proof. Since v is not free in β (t), for i either 1 or 2,

β (t[si/v]) = p(⃗u,(a1, t1[si/v]), . . . ,(am, tm[si/v]))

Therefore,

d(t[s1/v], t[s2/v]) =
1
2

max{d(t j[s1/v], t j[s2/v]) | j ≤ m} ≤ 1
2

d(s1,s2)

because t[−/v] is nonexpanding.

The following lemma allows us to define recursion in the variable v on coterms.

Lemma 4.3.19. Let t ∈ Γ such that v is not free in β (t). Then the function t[−/v] has a

unique fixed-point.

Proof. Recall that nonexpanding maps are also continuous. Given t ∈ Γ such that v is

not free in β (t), a unique fixed-point of the map t[−/v] can be obtained as follows.9

Since v is not free in β (t), clearly d(v, t) = 1 (here, v denotes the unique coterm

with β (v) = v). By Lemma 4.3.18, d(t, t[t/v]) = d(t[v/v], t[t/v]) ≤ 1
2 . Let t0 = v and

9Note that we could also have used the Banach fixed-point theorem [Ban22].

4.3. Behavioural Equivalence and the Final Coalgebra 201

tn+1 = t[tn/v]. By induction, for n > 0, we have

d(tn, tn+1) = d(t[tn−1/v], t[tn/v])≤ 1
2

d(tn−1, tn)

It follows that {ti}i∈N is a Cauchy sequence and therefore has a limit, call it t ′. By

continuity of t[−/v], t ′ = t[t ′/v]. Moreover, if s also satisfies s = t[s/v], we must have

d(t ′,s) = d(t[t ′/v], t[s/v])≤ 1
2

d(t ′,s)

so it must be the case that s = t ′. That is, t ′ is the unique fixed-point of t[−/v].

To make the definition of µv t precise, write fp v t for the unique coterm s such

that β (s) = fp v β (t). The point is that v is never free in fp v β (t).

Definition 4.3.20. Given t ∈ Γ, we write Fv(t) for the unique fixed-point of fp v t[−/v].

We finish the proof of Theorem 4.3.4 by showing that Fv(t) is the key ingredient

in the definition of γrec, i.e., the recursion operators γ(µv,−) on Z.

Mapping every S-term into its EQ-equivalence class is a surjective natural trans-

formation [−]EQ : S∗⇒M, and from it we obtain a surjective natural transformation

S∗(Var+Act× Id)⇒M(Var+Act× Id) (of the same name). Since (Z,ζ) is the final

BM-coalgebra, we obtain a unique coalgebra homomorphism [−]∗EQ : Γ→ Z in the

diagram below.

Γ Z

S∗(Var+Act×Γ)

M(Var+Act×Γ) M(Var+Act×Z)

[−]∗EQ

β

ζ

[−]EQ

(4.8)

The map [−]∗EQ allows for a presentation of process behaviours by coterms, i.e., the

map [−]∗EQ is surjective.

Lemma 4.3.21. For any t ∈ Z, there is an s ∈ Γ such that t = [s]∗EQ.

Proof. By surjectivity of [−]EQ : S∗(Var+Act×Z)→M(Var+Act×Z), there is a map

k : M(Var+Act×Z)→ S∗(Var+Act×Z) such that [−]EQ ◦ k = id. We obtain k∗ in the

202 Chapter 4. Effectful Process Calculi

diagram below from finality of (Z,ζ).

Z Γ Z

BMZ

BS∗Z BS∗Z

BMZ BMΓ BMZ

k∗

ζ

[−]∗EQ

β

ζk

[−]EQ

BS∗ (k∗)

[−]EQ

BM(k∗) BM([−]∗EQ)

(4.9)

The rectangles on the right and in the top left commute by definition. The bot-

tom left square commutes by naturality of [−]EQ. Thus, [−]∗EQ ◦ k∗ is a coalgebra

homomorphism. By finality of (Z,ζ), [−]∗EQ ◦ k∗ = id.

We would now like to set γ(µv, t) = [Fv(s)]∗EQ, but we need to check that [Fv(s)]∗EQ

satisfies the right identity and determines a well-defined function γ(µv,−). Both of

these properties follow from Lemma 4.3.22 below.

Lemma 4.3.22. Let t ∈ Γ. Then [Fv(t)]∗EQ satisfies the fourth identity in (4.5) from

Theorem 4.3.4, i.e., it is the unique solution to the equation ζ (r) = fp v ζ ([t]∗EQ){r//v}

in the indeterminate r.

The proof of Lemma 4.3.22 requires the following lemma, which tells us that

semantic subtitutions can be calculated using coterm substitution.

Lemma 4.3.23. For any s, t ∈ Γ, [s[t/v]]∗EQ = [s]∗EQ{[t]∗EQ/v}.

Proof. We are going to show that the relation

R = {([s[t/v]]∗EQ, [s]
∗
EQ{[t]∗EQ/v}) | s, t ∈ Γ}∪∆Z

is a bisimulation in (Z,ζ). We construct ρ : R→ BMR by induction on β (s). For the

first base case, if β (s) = v, then

ζ ([s[t/v]]∗EQ) = BM([−]∗EQ)◦ [−]EQ ◦β (s[t/v]) ([−]∗EQ a homom.)

= BM([−]∗EQ)◦ [−]EQ ◦β (t) (def. [−/v])

= ζ ([t]∗EQ) ([−]∗EQ a homom.)

4.3. Behavioural Equivalence and the Final Coalgebra 203

= ζ ([s]∗EQ{[t]∗EQ/v}) (ζ ([s]∗EQ) = v)

We let ρ(([s[t/v]]∗EQ, [s]
∗
EQ{[t]∗EQ/v})) agree with the diagonal bisimulation in this case.

Similarly for β (s) = u ̸= v. For the second base case, if β (s) = (a,s′), then

ζ ([s[t/v]]∗EQ) = BM([−]∗EQ)◦ [−]EQ ◦β (s[t/v]) ([−]∗EQ a homom.)

= BM([−]∗EQ)([(a,s′[t/v])]EQ) (def. [−/v])

= [(a, [s′[t/v]]∗EQ)]EQ

ζ ([s]∗EQ{[t]∗EQ/v}) = [(a, [s′]∗EQ{[t]∗EQ/v})]EQ (ζ ([s]∗EQ) = (a, [s′]∗EQ))

Thus, we set

ρ(([s[t/v]]∗EQ, [s]
∗
EQ{[t]∗EQ/v})) = [(a,([s′[t/v]]∗EQ, [s

′]∗EQ{[t]∗EQ/v}))]EQ

in this case. We see that

BM(π1)◦ρ(([s[t/v]]∗EQ, [s]
∗
EQ{[t]∗EQ/v}))

= BM(π1)([(a,([s′[t/v]]∗EQ, [s
′]∗EQ{[t]∗EQ/v}))]EQ)

= [(a, [s′[t/v]]∗EQ)]EQ

= ζ ([s[t/v]]∗EQ) (β (s) = (a,s′))

BM(π2)◦ρ(([s[t/v]]∗EQ, [s]
∗
EQ{[t]∗EQ/v}))

= BM(π2)([(a,([s′[t/v]]∗EQ, [s
′]∗EQ{[t]∗EQ/v}))]EQ)

= [(a, [s′]∗EQ{[t]∗EQ/v})]EQ

= ζ ([s]∗EQ{[t]∗EQ/v}) (ζ ([s]∗EQ) = [(a, [s′]∗EQ)]EQ)

as desired.

For the inductive step, assume ζ (s) = σ(ζ (s1), . . . ,ζ (sn)) and

BM(π1)◦ρ(([si[t/v]]∗EQ, [si]
∗
EQ{[t]∗EQ/v})) = ζ ([si[t/v]]∗EQ)

BM(π2)◦ρ(([si[t/v]]∗EQ, [si]
∗
EQ{[t]∗EQ/v})) = ζ ([si]

∗
EQ{[t]∗EQ/v})

204 Chapter 4. Effectful Process Calculi

for i≤ n. In this case, we set

ρ(([s[t/v]]∗EQ, [s]
∗
EQ{[t]∗EQ/v}))

= σ(ρ(([s1[t/v]]∗EQ, [s1]
∗
EQ{[t]∗EQ/v})), . . . ,ρ(([sn[t/v]]∗EQ, [sn]

∗
EQ{[t]∗EQ/v})))

Since BM(π j) is an S-algebra homomorphism, by the induction hypothesis we have

BM(π j)◦ρ(([s[t/v]]∗EQ, [s]
∗
EQ{[t]∗EQ/v}))

= BM(π j)(σ(ρ(([s1[t/v]]∗EQ, [s1]
∗
EQ{[t]∗EQ/v})),

. . . ,ρ(([sn[t/v]]∗EQ, [sn]
∗
EQ{[t]∗EQ/v}))))

= σ(BM(π j)◦ρ(([s1[t/v]]∗EQ, [s1]
∗
EQ{[t]∗EQ/v})),

. . . ,BM(π j)◦ρ(([sn[t/v]]∗EQ, [sn]
∗
EQ{[t]∗EQ/v})))

= σ(ζ ◦π j(([s1[t/v]]∗EQ, [s1]
∗
EQ{[t]∗EQ/v})),

. . . ,ζ ◦π j(([sn[t/v]]∗EQ, [sn]
∗
EQ{[t]∗EQ/v}))) (ind. hyp.)

=

σ(ζ ([s1[t/v]]∗EQ), . . . ,ζ ([sn[t/v]]∗EQ)) j = 1

σ(ζ ([s1]
∗
EQ{[t]∗EQ/v}), . . . ,ζ ([sn]

∗
EQ{[t]∗EQ/v})) j = 2

=

ζ ([s[t/v]]∗EQ) j = 1

ζ ([s]∗EQ{[t]∗EQ/v}) j = 2
(see prev. calculation)

as desired. It follows that R is a bisimulation.

We will also need the following observation: That [−]∗EQ preserves fp v. This can

be shown as follows:

ζ ([fp v t]∗EQ) = BM([−]∗EQ)([β (fp v t)]EQ) ([−]∗EQ a homom.)

= BM([−]∗EQ)([fp v β (t)]EQ) (def. fp v)

= BM([−]∗EQ)(fp v [β (t)]EQ) (def. branching theory)

= fp v BM([−]∗EQ)([β (t)]EQ) (fp nat.)

= fp v ζ ([t]∗EQ) ([−]∗EQ a homom.)

With Lemmas 4.3.10 and 4.3.23 and the above observation in hand, we are finally

ready to prove Lemma 4.3.22, which establishes [Fv(t)]∗EQ as the unique solution to

4.3. Behavioural Equivalence and the Final Coalgebra 205

the equation ζ (r) = fp v ζ (t){r//v} in the indeterminate r.

Proof of Lemma 4.3.22. To see that [Fv(t)]∗EQ satisfies the desired equation, we calcu-

late

ζ ([Fv(t)]∗EQ) = ζ ([fp v t[Fv(t)/v]]∗EQ) (def. Fv)

= ζ ([fp v t]∗EQ{[Fv(t)]∗EQ/v}) (Lemma 4.3.23)

= ζ (fp v [t]∗EQ{[Fv(t)]∗EQ/v}) (see above)

= ζ (fp v [t]∗EQ){[Fv(t)]∗EQ//v} (v not free in ζ (fp v −))

= fp v ζ ([t]∗EQ){[Fv(t)]∗EQ//v} (def. fp v)

Thus, ζ ([Fv(t)]∗EQ) = fp v ζ ([t]∗EQ){[Fv(t)]∗EQ//v}. By Lemma 4.3.10, [Fv(t)]∗EQ is the

unique behaviour satisfying this equation.

At last, Lemma 4.3.22 tells us that for any t ∈ Z and v ∈ Var, we can define

γrec(µv, t) = [Fv(s)]∗EQ for some s ∈ Γ such that [s]∗EQ = t, and furthermore that this

does does not depend on the representative s chosen.

4.3.2 The Proof of Lemma 4.3.7

The purpose of this section is to prove Lemma 4.3.7, that for any e,g ∈ Exp such that

no free variable of g appears bound in e, we have ⌊⌈e[g/v]⌋⌉ = ⌊⌈e⌋⌉{⌊⌈g⌋⌉/v} for any

v ∈ Var. Several lemmas are needed, which we present here. The following theorem

provides a simplified coinductive principle we will make use of in the proofs below.

Theorem 4.3.24. If h,k : Z→ Z satisfy properties (i)-(iii) below, then h = k.

(i) If ζ (t) = w, then ζ (h(t)) = ζ (k(t)).

(ii) If ζ (t) = (a,r), then ζ (h(t)) = (a,h(r)) and ζ (k(t)) = (a,k(r)).

(iii) If ζ (t) = σ(ζ (t1), . . . ,ζ (tn)), then

ζ (h(t)) = σ(ζ (h(t1)), . . . ,ζ (h(tn))) and ζ (k(t)) = σ(ζ (k(t1)), . . . ,ζ (k(tn)))

Proof. The gist of the proof below is that (i)-(iii) guarantee that h,k are coalgebra

homomorphisms. Since there exactly one coalgebra homomorphism (X ,δ)→ (Z,ζ),

206 Chapter 4. Effectful Process Calculi

it must be that h = k. Formally, we are going to show that the relation

R = {(h(t),k(t)) | t ∈ Z}

is a bisimulation. That is, we define a BM-coalgebra structure ρ : R→ BMR such that

the projections πi : R→ Z, i = 1,2, are coalgebra homomorphisms. By finality of

(Z,ζ), this then implies that π1 = !ρ = π2, or equivalently R⊆ ∆Z, which establishes

the identity we are hoping to prove.

Consider a t ∈ Z and let ζ (t) = p(⃗v,(a1,s1), . . . ,(an,sn)) ∈M(Var+Act×Z). We

proceed by induction on p(⃗v,(a1,s1), . . . ,(an,sn)) as follows:

• If ζ (t) = v, then set ρ(h(t),k(t)) = v.

• If ζ (t) = (a,s), then set ρ(h(t),k(t)) = (a,(h(s),k(s))).

• If ζ (t) = σ(ζ (t1), . . . ,ζ (tn)), then set

ρ(h(t),k(t)) = σ(ρ(h(t1),k(t1)), . . . ,ρ(h(tn),k(tn)))

This results in the explicit form

ρ(h(t),h(t)) = p(⃗v,(a1,(h(s1),k(s1))), . . . ,(a1,(h(sn),k(sn))))

To see that π1,π2 are coalgebra homomorphisms,

BM(π1)(ρ(h(t),k(t))) = M(π1)(p(⃗v,(a1,(h(s1),k(s1))), . . . ,(an,(h(sn),k(sn)))))

= p(⃗v,(a1,h(s1)), . . . ,(an,h(sn)))

= ζ ◦π1(h(t),k(t))

The second to last inequality is due to (i)-(iii), which ensures that

ζ (h(t)) = p(⃗v,(a1,h(s1)), . . . ,(an,h(sn)))

Similarly for π2.

For the following lemma, we say that a variable v is absent in a behaviour t if for

any other behaviour s, t{s/v}= t.

4.3. Behavioural Equivalence and the Final Coalgebra 207

Lemma 4.3.25. Let u,v ∈ Var and r,s, t ∈ Z. If v is absent in t and u ̸= v, then

r{s/v}{t/u}= r{t/u}{s{t/u}/v}

Proof. We use Theorem 4.3.24, which requires us to verify (i)-(iii) for the maps

(−){s/v}{t/u} and (−){t/u}{s{t/u}/v}. Assume u,v,w are distinct variables, and let

a ∈ Act. There are several cases to consider.

(i) If ζ (r) = v, then ζ (r{s/v}) = ζ (s) and ζ (r{t/u}) = ζ (r). This means that

ζ (r{s/v}{t/u}) = ζ (s{t/u}) = ζ (r{s{t/u}/v}) = ζ (r{t/u}{s{t/u}/v})

(i’) If ζ (r) = u, then ζ (r{s/v}) = ζ (r) and ζ (r{t/u}) = ζ (t). This means that

ζ (r{s/v}{t/u}) = ζ (r{t/u}) = ζ (t) = ζ (t{s{t/u}/v}) = ζ (r{t/u}{s{t/u}/v})

(i”) If ζ (r) = w /∈ {u,v}, then ζ (r{s/v}{t/u}) = ζ (r) = ζ (r{t/u}{s{t/u}/v}).

(ii) If ζ (r) = (a,r′), then ζ (r{s/v}) = (a,r′{s/v}) and ζ (r{t/u}) = (a,r′{t/u}). It

follows that

ζ (r{s/v}{t/u}) = (a,r′{s/v}{t/u})

and

ζ (r{t/u}{s{t/u}/v}) = (a,r′{t/u}{s{t/u}/v})

(iii) Now let ζ (r) = σ(ζ (r1), . . . ,ζ (rn)). By definition,

ζ (r{s/v}{t/u}) = σ(ζ (r1{s/v}{t/u}), . . . ,ζ (rn{s/v}{t/u}))

and

ζ (r{t/u}{s{t/u}/v}) = σ(ζ (r1{t/u}{s{t/u}/v}), . . . ,ζ (rn{t/u}{s{t/u}/v}))

as desired.

Lemma 4.3.26. For any r,s, t ∈ Z and v ∈ Var, r{s/v}{t/v}= r{s{t/v}/v}.

Proof. This also follows from Theorem 4.3.24, where this time h = (−){s/v}{t/v}

and k = (−){s{t/v}/v}.

208 Chapter 4. Effectful Process Calculi

Lemma 4.3.27. Let v ∈ Var and t,s ∈ Z. If v is absent in t, then ζ (t){s//v}= ζ (t).

Proof. We proceed by induction on ζ (t) = p(⃗v,(a1,s1), . . . ,(an,sn)) ∈M(Var+Act×Z).

• In case ζ (t) = u ̸= v, we have u{s//v}= u = ζ (t).

• Now let ζ (t) = (a1,s1). Since v is absent in t, (a1,s1){s//v} = (a1,s1{s/v}) =

ζ (t{s/v}) = ζ (t).

• For the inductive step, let ζ (t) = σ(ζ (t1), . . . ,ζ (tn)). By the induction hypothesis,

ζ (t){s//v}= σ(ζ (t1){s//v}, . . . ,ζ (tn){s//v}) = σ(ζ (t1), . . . ,ζ (tn)) = ζ (t)

Lemma 4.3.28. If v is absent in t, then ζ (t) = fp v ζ (t) and µv t = t.

Proof. Suppose ζ (t) = p(v, u⃗,(a1,s1), . . . ,(an,sn)) with v ̸= ui for any index i. If v is

absent in t, then t = t{0/v}, so that

ζ (t) = ζ (t{0/v})

= p(0, u⃗,(a1,s1{0/v}), . . . ,(an,sn{0/v}))

= fp v p(0, u⃗,(a1,s1{0/v}), . . . ,(an,sn{0/v})) (no v to reduce)

= fp v ζ (t{0/v})

= fp v ζ (t)

To see the latter statement,

ζ (µv t) = fp v ζ (t){µv t//v}= ζ (t){µv t//v}= ζ (t)

by Lemma 4.3.27.

Lemma 4.3.29. Let u,v be distinct variables and s, t ∈ Z. If v is absent in s, then

(µv t){s/u}= µv (t{s/u})

Proof. The behaviour µv (t{s/u}) is (by Lemma 4.3.10) the unique solution to the

behavioural differential equation

ζ (r) = fp v ζ (t{s/u}){r//v} (*)

4.3. Behavioural Equivalence and the Final Coalgebra 209

in the indeterminate r. Thus, it suffices to see that r = (µv t){s/u} satisfies this

equation. To this end, let ζ (t) = σ(ζ (t1), . . .ζ (tn)), so that

ζ (µv t) = fp v p(v, w⃗,(a1,s1{µv t/v}), . . . ,(an,sn{µv t/v}))

We have

ζ ((µv t){s/u})

= fp v p(v, w⃗,(a1,s1{µv t/v}{s/v}), . . . ,(an,sn{µv t/v}{s/v}))

= fp v p(v, w⃗,(a1,s1{s/v}{(µv t){s/v}/v}), . . . ,(an,sn{s/v}{(µv t){s/v}/v}))

(Lemma 4.3.27)

= fp v ζ (t{s/v}){(µv t){s/v}//v}

Lemma 4.3.30. Let v ∈ Var and e ∈ Exp. If v is not free in e, then v is absent in ⌊⌈e⌋⌉.

Proof. We show that ζ (⌊⌈e⌋⌉{s/v}) = ζ (⌊⌈e⌋⌉) for all s by induction on e. In the variable

case, e = u ̸= v. Here, ζ (⌊⌈u⌋⌉) = u, so ζ (⌊⌈u⌋⌉{s/v}) = ζ (⌊⌈u⌋⌉).

Now suppose the result is true for e. Since v is free in ae if and only if v is

free in e, it must be the case that v is not free in e. By the induction hypothesis,

ζ (⌊⌈ae⌋⌉{s/v}) = (a,⌊⌈e⌋⌉{s/v}) = (a,⌊⌈e⌋⌉) = ζ (⌊⌈ae⌋⌉).

Next, assume the result for e1, . . . ,en, and let σ be an S-operation. Since v

is not free in σ(e1, . . . ,en) if and only if v is not free in any of the ei, and since

ζ (⌊⌈σ(e1, . . . ,en)⌋⌉) = σ(ζ (⌊⌈e1⌋⌉), . . . ,ζ (⌊⌈en⌋⌉)), we have

ζ (⌊⌈σ(e1, . . . ,en)⌋⌉{s/v}) = σ(ζ (⌊⌈e1⌋⌉{s/v}), . . . ,ζ (⌊⌈en⌋⌉{s/v})) (def. {−/v}, ⌊⌈−⌋⌉)

= σ(ζ (⌊⌈e1⌋⌉), . . . ,ζ (⌊⌈en⌋⌉)) (induct. hyp.)

= ζ (⌊⌈σ(e1, . . . ,en)⌋⌉)

Now assume the result for e and let u ∈ Var. In this case, we consider the

expression µu e and the following two subcases.

• If u = v, then v is not free in µu e and therefore satisfies the hypotheses of the

210 Chapter 4. Effectful Process Calculi

lemma. In this case, let ζ (⌊⌈e⌋⌉) = p(v, u⃗,(a1,s1), . . . ,(an,sn)). Then

ζ (⌊⌈µv e⌋⌉{s/v})

= fp v p(v, u⃗,(a1,s1{⌊⌈µv e⌋⌉/v}{s/v}), . . . ,(an,sn{⌊⌈µv e⌋⌉/v}{s/v}))

= fp v p(v, u⃗,(a1,s1{⌊⌈µv e⌋⌉{s/v}/v}), . . . ,(an,sn{⌊⌈µv e⌋⌉{s/v}/v}))

= fp v ζ (⌊⌈e⌋⌉){⌊⌈µv e⌋⌉{s/v}/v}

Now, ⌊⌈µu e⌋⌉ is the unique solution to the behavioural differential equation

ζ (r) = ζ (⌊⌈e⌋⌉){r//u} in the indeterminate r, and r = ⌊⌈µv e⌋⌉{s/t} satisfies this

equation. It must be that ⌊⌈µv e⌋⌉= ⌊⌈µv e⌋⌉{s/v}. Hence, v is absent in ⌊⌈µv e⌋⌉.

• Now assume u ̸= v. This means that v is free in µu e if and only if it is free

in e, so by the induction hypothesis v is absent in ⌊⌈e⌋⌉. This time, we use the

induction hypothesis and write ζ (⌊⌈e⌋⌉) = p(⃗u,(a1, t1), . . . ,(am, tm)), in which v

does not appear and in which v is absent in each of the si.

First consider the case where u is not free in s. In this case, we have

ζ (⌊⌈µu e⌋⌉{s/v})

= fp u p(⃗u,(a1,s1{⌊⌈µu e⌋⌉/u}{s/v}), . . . ,(an,sn{⌊⌈µu e⌋⌉/u}{s/v}))

(def. of ⌊⌈µu −⌋⌉ ,{−/v})

= fp u p(⃗u,(a1,s1{s/v}{⌊⌈µu e⌋⌉{s/v}/u}), . . . ,(an,sn{s/v}{⌊⌈µu e⌋⌉{s/v}/u}))

(Lemma 4.3.25)

= fp u p(⃗u,(a1,s1{⌊⌈µu e⌋⌉{s/v}/u}), . . . ,(an,sn{⌊⌈µu e⌋⌉{s/v}/u}))

(v absent in si)

= fp u ζ (⌊⌈e⌋⌉){⌊⌈µu e⌋⌉{s/v}//u})

Again, r = ⌊⌈µu e⌋⌉{s/v} solves the equation characterizing ⌊⌈µu e⌋⌉, so by

Lemma 4.3.10, ⌊⌈µu e⌋⌉= ⌊⌈µu e⌋⌉{s/v}.

Finally, consider the following. Both u and v are clearly absent in ⌊⌈0⌋⌉, so for

arbitrary s ∈ Z we have

⌊⌈µu e⌋⌉{s/v}= ⌊⌈µu e⌋⌉{⌊⌈0⌋⌉/v}{s/v}= ⌊⌈µu e⌋⌉{⌊⌈0⌋⌉{s/v}/v}

= ⌊⌈µu e⌋⌉{⌊⌈0⌋⌉/v}= ⌊⌈µu e⌋⌉

4.3. Behavioural Equivalence and the Final Coalgebra 211

It follows that v is absent in ⌊⌈µu e⌋⌉.

This brings us to the proof of Lemma 4.3.7, which states that for any e,g ∈ Exp

and v ∈ Var such that e[g/v] is defined, ⌊⌈e[g/v]⌋⌉= ⌊⌈e⌋⌉{⌊⌈g⌋⌉/v}.

Proof of Lemma 4.3.7. We proceed by induction on e.

• For the variable case, let u ̸= v. There are two cases to consider. First, suppose

e = v. We have ζ (⌊⌈v⌋⌉{⌊⌈g⌋⌉/v}) = ζ (⌊⌈g⌋⌉) = ζ (⌊⌈v[g/v]⌋⌉). Now assume e = u.

Here, we have ζ (⌊⌈u⌋⌉{⌊⌈g⌋⌉/v}) = ζ (⌊⌈u⌋⌉) = ζ (⌊⌈u[g/v]⌋⌉).

• For the inductive step, assume the result for e and consider the process term ae.

We have

ζ (⌊⌈ae⌋⌉{⌊⌈g⌋⌉/v}) = (a,⌊⌈e⌋⌉{⌊⌈g⌋⌉/v}) = (a,⌊⌈e[g/v]⌋⌉) = ζ (⌊⌈ae[g/v]⌋⌉)

• Now consider σ(e1, . . . ,en) for ei ∈ Exp, i≤ n, and assume the result for e1, . . . ,en.

We have

ζ (⌊⌈σ(e1, . . . ,en)⌋⌉{⌊⌈g⌋⌉/v}) = σ(ζ (⌊⌈e1⌋⌉{⌊⌈g⌋⌉/v}), . . . ,ζ (⌊⌈en⌋⌉{⌊⌈g⌋⌉/v}))

= σ(ζ (⌊⌈e1[g/v]⌋⌉), . . . ,ζ (⌊⌈en[g/v]⌋⌉))

= ζ (⌊⌈σ(e1, . . . ,en)[g/v]⌋⌉)

• Finally, assume the result for e and consider µu e. Assume that ζ (⌊⌈e⌋⌉) =

p(u, v⃗,(a1,q1), . . . ,(an,qn)). Since no free variable of g is bound in µu e, u in

particular is not free in g. By Lemma 4.3.30, u is therefore absent in ⌊⌈g⌋⌉, so

ζ (⌊⌈µu e⌋⌉{⌊⌈g⌋⌉/v})

= fp u p(u, v⃗,(a1, t1{⌊⌈µu e⌋⌉/u}{⌊⌈g⌋⌉/v}), . . . ,(am, tm{⌊⌈µu e⌋⌉/u}{⌊⌈g⌋⌉/v}))

= fp u p(u, v⃗,(a1, t1{⌊⌈g⌋⌉/v}{⌊⌈µu e⌋⌉{⌊⌈g⌋⌉/v}/u}),

. . . ,(am, tm{⌊⌈g⌋⌉/v}{⌊⌈µu e⌋⌉{⌊⌈g⌋⌉/v}/u})) (Lemma 4.3.25)

= fp u ζ (⌊⌈e⌋⌉{⌊⌈g⌋⌉/v}){⌊⌈µu e⌋⌉{⌊⌈g⌋⌉/v}//u}

= fp u ζ (⌊⌈e[g/v]⌋⌉){⌊⌈µu e⌋⌉{⌊⌈g⌋⌉/v}//u} (ind. hyp.)

Hence, ⌊⌈µu e⌋⌉{⌊⌈g⌋⌉/v} satisfies the equation characterizing ⌊⌈µu (e[g/v])⌋⌉. It

212 Chapter 4. Effectful Process Calculi

follows from Lemma 4.3.10 that

⌊⌈µu (e[g/v])⌋⌉= ⌊⌈(µu e)[g/v]⌋⌉= ⌊⌈µu e⌋⌉{⌊⌈g⌋⌉/v}

4.4 An Axiomatization of Behavioural Equivalence

An important corollary of Theorem 4.3.9 is that behavioural equivalence is a ΣM-

congruence on (Exp,ev), meaning that it is preserved by all the program constructs of

ΣM. This opens the door to the possibility of algebraically reasoning about behavioural

equivalences between process terms from just a few axioms. The purpose of this

section is to show that all behavioural equivalences between process terms can be

derived from the equations EQ presenting (M,η ,µ) as well as three axiom schemas

concerning the recursion operators. We are specifically going to focus on process

algebras obtained from iterative branching theories, as they are the most common

type of process calculus that appears in the literature (see Examples 4.1.7 and 4.2.7

to 4.2.9).

Definition 4.4.1. Given an iterative branching theory (S,EQ, fp), the effectful process

calculus obtained from (S,EQ, fp) is the ΣM-algebra (Exp/≡, [ev]≡) of process terms

modulo the theory EFA, which consists of the axioms of EQ and (R1)-(R4) below.

The first two out of the three recursion axiom schemas for the resulting specifi-

cation language are

(R1) µv e = e[µv e/v]
w not free in e

(R2)
µv e = µw (e[w/v])

The axiom (R1) allows us to unravel recursive terms. This has the effect of identifying

µv av with a(µv av), for example. This satisfies our intuition that µv av should solve

the recursive specification x = ax in the indeterminate x.

The axiom (R2) states that equivalence is invariant under α-conversion. That

is, recursion variables can be swapped for fresh variables without changing the

congruence class. This identifies process terms like µv av and µw aw, which intuitively

should denote the same solution to x = ax.

4.4. An Axiomatization of Behavioural Equivalence 213

The third and fourth recursion axiom schemas can be stated as proof rules,

v guarded in g1, . . . ,gn
(R3)

µv p(v, g⃗) = µv (fp v p(v, g⃗))

g = e[g/v] v guarded in e
(R4)

g = µv e

The first axiom tell us that µv computes fixed-points by applying the unguarded

iteration operator first, and the second axiom that the fixed-point denoted by µv is

unique for guarded expressions.

Definition 4.4.2. For e, f ∈ Exp, if e = f is derivable from EFA and equational logic

(extended to the algebraic signature ΣM), then we write EFA ⊢ e = f or e≡ f and say

that e and f are provably equivalent. We write [−]≡ : Exp→ Exp/≡ for the quotient

map Exp→ Exp/≡.

When we refer to examples like ARB, ACF, APA, and ARB, we are often identi-

fying each of these with their associated effectful process algebra (Exp/≡, [ev]≡) of

process terms modulo ≡.

Soundness

Fix an iterative branching theory (S,EQ, fp) presenting a monad (M,η ,µ). We would

like to argue that≡ is sound with respect to behavioural equivalence of BM-coalgebras,

that ⌊⌈e⌋⌉ = ⌊⌈ f ⌋⌉ whenever e ≡ f . This can be derived from the fact that the set of

congruence classes of process terms itself forms a BM-coalgebra.

Lemma 4.4.3. The congruence ≡ is the kernel of a coalgebra homomorphism.

Throughout the following proof, we allow for the lifting of [−//v] to Exp/≡,

defined inductively and satisfying BM([−]≡)(p)[[g]≡//v] = BM([−]≡)(p[g//v]).

Proof. We need to fill in the following diagram with a map ε̄

Exp Exp/≡

BMExp BM(Exp/≡)

[−]≡

ev ε̄

BM([−]≡)

(4.10)

Since [−]≡ is surjective, we would like to be able to define ε̄ by setting ε̄([e]≡) =

BM([−]≡)◦ ε(e) for any e ∈ Exp. That this is well-defined amounts10 to showing the

10This is called the diagonal fill-in property of Set [Rut00].

214 Chapter 4. Effectful Process Calculi

inclusion ker([−]≡)⊆ ker(BM([−]≡)◦ ε). Since ker([−]≡) is ≡, we need to show that

e≡ f implies BM([−]≡)◦ε(e) = BM([−]≡)◦ε(f). We do this by induction on the proof

of EFA ⊢ e = f .

If (e, f) ∈ EQ, then since ε is an S-algebra homomorphism, ε(e) = ε(f). It is

trivial that (Ref) is sound. The other rules that do not have any premises are (R1)

and (R2). In (R1), let ε(e) = p(v, u⃗, ξ⃗) where ξi ∈ Act×Exp.

BM([−]≡)◦ ε(µv e) = BM([−]≡)
(
fp v ε(e)[µv e//v]

)
= BM([−]≡)

(
fp v ε(e)

)
[[µv e]≡//v]

= BM([−]≡)
(

p(fp v ε(e), u⃗, ξ⃗)
)
[[µv e]≡//v] (fp is iter.)

=
(

p(BM([−]≡)(fp v ε(e)), u⃗,BM([−]≡)(⃗ξ))
)
[[µv e]≡//v]

(homom.)

= p(BM([−]≡)(fp v ε(e))[[µv e]≡//v], u⃗,BM([−]≡)(⃗ξ)[[µv e]≡//v])

(homom.)

= p(BM([−]≡)(fp v ε(e)[µv e//v]), u⃗,BM([−]≡)(⃗ξ [µv e//v]))

= p(BM([−]≡)◦ ε(µv e), u⃗,BM([−]≡)(⃗ξ [µv e//v])) (def. µv)

= BM([−]≡)
(

p(ε(µv e), u⃗, ξ⃗ [µv e//v])
)

= BM([−]≡)◦ ε(e[µv e/v])

Soundness of the rule (R2) is a consequence of the fact that fp v p(v, x⃗) = fpw p(w, x⃗)

if w /∈ x⃗, and that f [g/v] = f [w/v][g/w]. This concludes the base case.

For the inductive case, assume that e≡ f , ei ≡ fi, and let a ∈ Act, v ∈ Var. Again,

(Ref) and (Tra) trivially hold. Next we show that (Con) holds: In the Act×Exp case,

BM([−]≡)◦ ε(ae) = (a, [e]≡) = (a, [f]≡) = BM([−]≡)◦ ε(a f)

In the S-algebra case,

BM([−]≡)◦ ε(σ (⃗e)) = σ(BM([−]≡)◦ ε(e1), . . . ,BM([−]≡)◦ ε(en))

= σ(BM([−]≡)◦ ε(f1), . . . ,BM([−]≡)◦ ε(fn)) (ind. hyp.)

= BM([−]≡)◦ ε(σ(f⃗))

4.4. An Axiomatization of Behavioural Equivalence 215

In the recursion case,

BM([−]≡)◦ ε(µv e) = BM([−]≡)(fp v ε(e)[µv e//v])

= fp v BM([−]≡)(ε(e))[[µv e]≡//v]

= fp v BM([−]≡)(ε(f))[[µv e]≡//v] (induct. hyp.)

= fp v BM([−]≡)(ε(f))[[µv f]≡//v] (Con)

= BM([−]≡)◦ ε(µv f)

For (R3), observe that if v is guarded in g1, . . . ,gn, then

ε(µv (p(v, g⃗))) = fp v ε(p(v, g⃗))[µv p(v, g⃗)//v] (def.)

= fp v p(v,ε (⃗g))[µv p(v, g⃗)//v] (ε an S-alg. homom.)

= ε(fp v p(v, g⃗))[µv p(v, g⃗)//v]

so that under BM([−]≡),

BM([−]≡)◦ ε(µv (p(v, g⃗))) = BM([−]≡)(ε(fp v p(v, g⃗))[µv p(v, g⃗)//v])

= BM([−]≡)◦ ε(fp v p(v, g⃗))[[µv p(v, g⃗)]≡//v]

= BM([−]≡)◦ ε(fp v p(v, g⃗))[[µv (fp v p(v, g⃗))]≡//v] (R3)

= BM([−]≡)(ε(fp v p(v, g⃗))[µv (fp v p(v, g⃗))//v])

= BM([−]≡)(ε(µv (fp v p(v, g⃗))))

The last equality holds because if v ∈ gv(e), then ε(µv e) = ε(e)[µv e/v], for any

e ∈ Exp. Finally, for (R4), assume that v is guarded in e, g≡ e[g//v], and that

BM([−]≡)◦ ε(g) = BM([−]≡)◦ ε(e[g/v])

Then we can derive

BM([−]≡)◦ ε(e[g/v]) = BM([−]≡)(ε(e)[g//v]) (v ∈ gv(e))

= BM([−]≡)(ε(e))[[g]≡//v]

= BM([−]≡)(ε(e))[[µv e]≡//v] (R4)

216 Chapter 4. Effectful Process Calculi

= BM([−]≡)(ε(e)[µv e//v])

= BM([−]≡)(fp v ε(e)[µv e//v]) (*)

= BM([−]≡)◦ ε(µv e)

In (*), we used that v does not appear as a free variable in an S-term representing

ε(e), due to v being guarded in e (this can be shown easily by induction on e).

We write (Exp/≡, ε̄) for the coalgebra structure on Exp/≡ making [−]≡ a coalge-

bra homomorphism (there is one such coalgebra structure [Rut00]). As ⌊⌈−⌋⌉ is the

unique coalgebra homomorphism (Exp,ε)→ (Z,ζ), and because there is also a coalge-

bra homomorphism !ε̄ : (Exp/≡, ε̄)→ (Z,ζ), it must be the case that !ε̄ ◦ [−]≡ = ⌊⌈−⌋⌉.

By Lemma 4.4.3, if e≡ f , then ⌊⌈e⌋⌉= !ε̄([e]≡) = !ε̄([f]≡) = ⌊⌈ f ⌋⌉. This establishes the

following.

Theorem 4.4.4 (Soundness). Let e, f ∈ Exp. If e≡ f , then ⌊⌈e⌋⌉= ⌊⌈ f ⌋⌉.

Soundness allows us to derive at least a subset of all the behavioural equivalences

between process terms from the axioms in EQ and R. If our aspiration were simply to

have a set of behaviour-preserving code-transformations, then we could simply stop

here and be satisfied, since in principle we could see the axioms of EQ and (R1)-(R4)

as rewrite rules that satisfy this purpose.

Completeness

Aiming a bit higher than deriving only a few behavioural equivalences between

process terms, we move on to show the converse of Theorem 4.4.4, that ≡ is complete

with respect to behavioural equivalence. We make use of Lemma 2.5.3 below, which

allows us to organize the completeness proof into a few intuitive steps.

Lemma 2.5.3. Let (E,ε) and (Z,ζ) be B-coalgebras with (Z,ζ) final. Then the be-

haviour map !ε : (E,ε)→ (Z,ζ) is injective if and only if there is a class C of B-coalgebras

that is closed under homomorphic images and such that (E,ε) is final in C.

A subcoalgebra of a B-coalgebra (X ,β) is an injective map in : U ↪→ X such that

β |U factors through B(in). A B-coalgebra is locally finite if every of its states is con-

tained in (the image of) a finite subcoalgebra. We instantiate Lemma 2.5.3 in the case

where B = BM, (E,ε) = (Exp/≡, ε̄), and C is the class of locally finite BM-coalgebras.

4.4. An Axiomatization of Behavioural Equivalence 217

Completeness of ≡ with respect to behavioural equivalence follows shortly after, for

if ⌊⌈e⌋⌉= ⌊⌈ f ⌋⌉, then !ε̄([e]≡) = !ε̄([f]≡). By Lemma 2.5.3, !ε̄ is injective, so [e]≡ = [f]≡

or equivalently, e≡ f . To establish the converse of Theorem 4.4.4, it suffices to show

that our choices of (E,ε) and C satisfy the hypotheses of Lemma 2.5.3.

Lemma 4.4.5. The coalgebra (Exp,ε) is locally finite.

Proof. Given e ∈ Exp, we construct a subcoalgebra of (Exp,ε) that has a finite set of

states that includes e. To this end, define U : Exp→Pω(Exp) by

U(v) = {v} U(ae) = {ae}∪U(e) U(σ(e1, . . . ,en)) = {σ(e1, . . . ,en)}∪
⋃
i≤n

U(ei)

U(µv e) = {µv e}∪U(e)[µv e//v] = {µv e}∪{ f [µv e//v] | f ∈U(e)}

Note that e ∈U(e) for all e ∈ Exp and that U(e) is finite. We begin with following

claim, which says that the outgoing transitions of e are given in terms of expressions

from U(e): For any e ∈ Exp, there is a representative S-term p ∈ ε(e) such that

p ∈ S∗(Var+Act×U(e)). This can be seen by induction on the construction of e, the

only interesting case being in the inductive step µv e. Here, let ε(e) = q and observe

that p = fp v q[µv e//v] is a representative of ε(µv e) in S∗(Var+Act×U(µv e)).

To finish the proof of the lemma, fix an e ∈ Exp and define a sequence of sets

beginning with U0 = {e} and proceeding with

Un+1 =Un∪
⋃

e0∈Un

{g | (∃a∈ Act)(∃p∈ ε(e0)∩S∗(Var+Act×U(e0))) (a,g) appears in p}

Then U0 ⊆ U1 ⊆ ·· · ⊆ U(e) and the latter set is finite, so U :=
⋃

Un is finite and

contained in U(e). We define a coalgebra structure εU : U → BMU by taking εU(e) =

[p]EQ where if e ∈Un, then p is a representative of ε(e) in S∗(Var+Act×Un+1). Since

S∗(Var+Act×Un+1)⊆ S∗(Var+Act×U), this defines a BM-coalgebra structure on U .

Where in : U ↪→ Exp, we have ε(in(e)) = ε(e) = BM(in) ◦ εU(e), so (U,εU) is a finite

subcoalgebra of (Exp,ε) containing e.

The class of locally finite coalgebras is closed under homomorphic images: If

(X ,β) is locally finite and h : (X ,β)→ (Y,ϑ) is a surjective homomorphism, then for

any y ∈ Y and x ∈ X such that h(x) = y, and for any finite subcoalgebra U of (X ,β)

containing x, h[U] is a finite subcoalgebra of (Y,ϑ) containing y (see Lemma 2.2.9

218 Chapter 4. Effectful Process Calculi

or [Gum99]). Since y was arbitrary, (Y,θ) is locally finite. It follows from Lemma 4.4.3

that (Exp/≡, ε̄) is locally finite.

What remains to be seen among the hypotheses of Lemma 2.5.3 is that (Exp/≡, ε̄)

is the final locally finite coalgebra, meaning that for any locally finite coalgebra (X ,β)

there is a unique coalgebra homomorphism (X ,β)→ (Exp/≡, ε̄). In fact, it suffices

to see that every finite subcoalgebra of (X ,β) admits a unique coalgebra homo-

morphism into (Exp/≡, ε̄). To see why it suffices, define φU : (U,βU)→ (Exp/≡, ε̄)

to be the unique homomorphism from any finite subcoalgebra U of (X ,β). Given

two finite subcoalgebras U,V of (X ,β) containing a particular state x ∈ X , one can

find a subcoalgebra W ⊆ U ∩V containing x [Gum99]. By uniqueness, we have

φU(x) = φW (x) = φV (x), so setting φ(x) = φU(x), for any U a subcoalgebra of (X ,β)

containing x, defines a coalgebra homomorphism φ : (X ,β)→ (Exp/≡, ε̄). Further-

more, given any other coalgebra homomorphism ψ of the same type, restricting

to a subcoalgebra U containing x gives ψ(x) = ψU(x) = φU(x) = φ(x). Hence, from

uniqueness of homomorphisms from finite subcoalgebras we obtain uniqueness of

homomorphisms from locally finite coalgebras.

To this end, we make use of an old idea originating in the work of Salo-

maa [Sal66]. We associate with every finite coalgebra a certain system of equations

whose solutions (in Exp/≡) are in one-to-one correspondence with coalgebra homo-

morphisms into (Exp/≡, ε̄). Essentially, if a system admits a unique solution, then

its corresponding coalgebra admits a unique homomorphism into (Exp/≡, ε̄). This

would then establish finality.

Definition 4.4.6. A (finite) system of equations is a sequence of the form {xi = ei}i≤n

where xi ∈ Var and ei ∈ Exp for i≤ n, and none of x1, . . . ,xn appear as bound variables

in any of e1, . . . ,en. A system of equations {xi = ei}i≤n is guarded if x1, . . . ,xn are

guarded in every ei. A solution to {xi = ei}i≤n is a function ϕ : {xi}i≤n→ Exp such that

ϕ(xi)≡ ei[ϕ(x1)/x1, . . . ,ϕ(xn)/xn]

for all i≤ n and x1, . . . ,xn do not appear free in ϕ(xi) for any i≤ n.

Every finite BM-coalgebra (X ,β) gives rise to a guarded system of equations in

4.4. An Axiomatization of Behavioural Equivalence 219

the following way: for each p ∈ S∗(Var+Act×X), define p† inductively as

v† = v (a,e)† = ae σ(q1, . . . ,qn)
† = σ(q†

1, . . . ,q
†
n)

and for each x ∈ X , let px be a representative of β (x). The11 system of equations

associated with (X ,β) is then defined to be {x = p†
x}x∈X . We treat the elements of X

as variables in these equations. By definition, every y ∈ X is guarded in p†
x .

Theorem 4.4.7. Let (X ,β) be a finite BM-coalgebra and ϕ : X → Exp a function. Then

the composition [−]≡ ◦ϕ : X → Exp/≡ is a BM-coalgebra homomorphism if and only if

ϕ is a solution to the system of equations associated with (X ,β).

The proof of this theorem requires a lemma in the spirit of the fundamental

theorem of regular expressions (Theorem 2.2.18).

Lemma 4.4.8. For any e ∈ Exp, there exist v1, . . . ,vn ∈ Var, and process terms

g1, . . . ,gm such that vi is guarded in g j for all i, j, and there exists some p(⃗x, y⃗) ∈

S∗{x1, . . . ,xn,y1, . . . ,ym} such that EFA ⊢ e = p(⃗v, g⃗).

Proof. The proof is by induction on e, the only interesting case being the inductive

step for the recursion operator µv e. First, find q(v, v⃗, f⃗) ≡ e using the induction

hypothesis, then use (R3). Since v is not free in fp v q(v, v⃗, f⃗), we have

EFA ⊢ µv e = µv q(v, v⃗, f⃗)

= µv (fp v q(v, v⃗, f⃗)) (R3)

= fp v q(v, v⃗, f⃗ [µv (fp v q(v, v⃗, f⃗))/v]) (R1)

Take p(⃗x, y⃗) = fp v q(v, x⃗, y⃗), g⃗ = f⃗ [µv (fp v q(v, v⃗, f⃗))/v].

The consequence of Lemma 4.4.8 that is used in the proof of Theorem 4.4.7 is

that for any e ∈ Exp and v ∈ Var, there is an e′ ∈ Exp such that v is guarded in e′ and

EFA ⊢ µv e = µv e′.

Proof of Theorem 4.4.7. We begin by observing that ε̄ : Exp/≡→ BMExp/≡ is a bijec-

11Technically speaking, there could be many systems of equations associated with a given coalgebra.
We say “the” system of equations because any two have the same set of solutions up to EQ.

220 Chapter 4. Effectful Process Calculi

tion. Indeed, the map (−)♡ : BMExp/≡→ Exp/≡ defined

v♡ = [v]≡ (a, [e]≡)♡ = [ae]≡ σ(p1, . . . , pn)
♡ = σ(p♡1 , . . . , p♡n)

is its inverse. By construction, ε̄(p♡) = p for any p ∈ BMExp/≡, so it suffices to see

that ε̄([e]≡)♡ = [e]≡ for all e ∈ Exp. This can be done by induction on the construction

of e, and again the only interesting case is µv e. By Lemma 4.4.8, we can assume

that v is guarded in e. Furthermore, we can define [g]≡[[µv e]≡//v] = [g[µve//v]] on

Exp/≡ by (Con).

ε̄([µv e]≡)♡ = (ε̄(e)[[µv e]≡//v])♡

= (ε̄(e))♡[[µv e]≡//v] (*)

= [e]≡[[µv e]≡//v] (induct. hyp.)

= [e[µv e/v]]≡

= [µv e]≡ (R1)

I used that guarded syntactic substitution commutes with (−)♡ in (*), which can be

seen with an easy induction on terms in S∗(Var+Act× (Exp/≡)).

Now let {x = p†
x}x∈X be the system of equations associated with the coalgebra

(X ,β). Observe that for any x,y ∈ X , if y appears in px, then it is guarded in p†
x . This

means that ϕ : X→Exp is a solution to {x= p†
x}x∈X if and only if ϕ(x)≡ p†

x [ϕ(y)//y]y∈X .

Now, if β (x) = px, we see that

(BM([−]≡ ◦ϕ)(β (x)))♡ = (BM([−]≡)◦BM(ϕ)(px))
♡ (functoriality)

= (BM([−]≡)(px[ϕ(y)//y]y∈X))
♡ (BM(ϕ) an alg. homom.)

= (px[ϕ(y)//y]y∈X)
♡

= p†
x [ϕ(y)//y]y∈X

Thus, ϕ is a solution to the system {x = p†
x}x∈X if and only if

[−]≡ ◦ϕ(x) = (−)♡ ◦BM([−]≡ ◦ϕ)◦β (x) (4.11)

for every x ∈ X . The maps (−)♡ and ε̄ are inverse to one another, so (4.11) is

4.4. An Axiomatization of Behavioural Equivalence 221

equivalent to the identity ε̄ ◦ [−]≡ ◦ϕ = BM([−]≡ ◦ϕ)◦β . This identity is the defining

property of a coalgebra homomorphism of the form [−]≡ ◦ϕ.

As a direct consequence of Theorem 4.4.7, we see that a finite subcoalgebra

U ↪→ Exp of (Exp,ε) is a solution to the system of equations associated with (U,ε|U).

Example 4.4.9. The system of equations associated with the automaton in Exam-

ple 4.2.7 is the two-element set consisting of

x = p1y+B u

y = v+B p2x
u x y v

B | p1

B̄ | p2

B̄ B

The map ϕ : {x1,x2} → Exp defined by ϕ(x1) = µw (p1(v+B p2w)+B u) and ϕ(x2) =

v+B p2 ϕ(x1) is a solution.

Theorem 4.4.7 establishes a one-to-one correspondence between solutions to

systems and coalgebra homomorphisms as follows. Say that two solutions ϕ and

ψ to a system {xi = ei}i≤n are ≡-equivalent if ϕ(xi) ≡ ψ(xi) for all i ≤ n. Starting

with a solution ϕ : X → Exp to the system associated with (X ,β), we obtain the

homomorphism [−]≡ ◦ϕ using Theorem 4.4.7. A pair of solutions ϕ and ψ are

≡-equivalent if and only if [−]≡ ◦ϕ = [−]≡ ◦ψ , so up to ≡-equivalence the correspon-

dence ϕ 7→ [−]≡ ◦ϕ is injective. Going in the opposite direction and starting with a

homomorphism ψ : (X ,β)→ (Exp/≡, ε̄), let ex be a representative of ψ(x) for each

x ∈ X and define ϕ = λx.ex. Then ϕ is a solution to (X ,β), and [−]≡ ◦ϕ = ψ. Thus,

up to ≡-equivalence, solutions to systems are in one-to-one correspondence with

coalgebra homomorphisms into (Exp/≡, ε̄).

Say that a system admits a unique solution up to ≡ if it has a solution and any

two solutions to the system are ≡-equivalent. Since, up to ≡-equivalence, solutions

to a system associated with a coalgebra (X ,β) are in one-to-one correspondence

with coalgebra homomorphisms (X ,β)→ (Exp/≡, ε̄), it suffices for the purposes of

satisfying the hypotheses of Lemma 2.5.3 to show that every finite guarded system of

equations admits a unique solution up to≡. The following theorem is a generalization

of [Mil84, Theorem 5.7].

Theorem 4.4.10. Finite guarded systems of equations admit a unique solution up to ≡.

The proof is a recreation of the one that appears under [Mil84, Theorem 5.7]

222 Chapter 4. Effectful Process Calculi

with the more general context of this chapter in mind. Remarkably, the essential

details of the proof remain unchanged despite the jump in abstraction.

Proof. Let {xi = ei}i≤n be a guarded system of equations. We proceed by induction

on n. In the base case, n = 1. This case is straight-forward because ϕ(x1) := µx1 e1 is

its unique solution up to ≡ by (R4).

Now assume that every system of strictly fewer than n guarded equations has a

unique solution up to ≡. Define fn = µxn en and fi = ei[fn/xn] for each i < n. Since

x1, . . . ,xn are guarded in ei for i ≤ n, the system {xi = fi}i<n is also guarded, and

x1, . . . ,xn−1 do not appear freely in fi for any i < n. By the induction hypothesis,

{xi = fi}i<n has a unique solution ψ : {x1, . . . ,xn−1}→ Exp up to ≡.

Let gi = ψ(xi) for i < n and gn = fn[g1/x1, . . . ,gn−1/xn−1], and note that xn is not

free and does not appear bound in any of f1, . . . , fn−1 by construction. Then ϕ(xi) := gi

for i≤ n is indeed a solution of the desired form, since

gn = fn[g1/x1, . . . ,gn−1/xn−1]

= (µxn en)[g1/x1, . . . ,gn−1/xn−1]

= µxn (en[g1/x1, . . . ,gn−1/xn−1]) (xn not free in gi)

≡ en[g1/x1, . . . ,gn−1/xn−1][gn/xn] (R1),(xn guarded in gn)

= en[g1/x1, . . . ,gn−1/xn−1,gn/xn] (xn not free in gi)

and for any i < n,

gi ≡ fi[g1/x1, . . . ,gn−1/xn−1]

= ei[fn/xn][g1/x1, . . . ,gn−1/xn−1]

= ei[g1/x1, . . . ,gn−1/xn−1][fn[g1/x1, . . . ,gn−1/xn−1]/xn]

= ei[g1/x1, . . . ,gn−1/xn−1, fn[g1/x1, . . . ,gn−1/xn−1]/xn]

= ei[g1/x1, . . . ,gn−1/xn−1,gn/xn]

because xn is not free in gi for any i < n.

To see that ϕ is the unique solution, let θ(xi) = hi for i≤ n be any other solution

4.5. Star Fragments 223

to {xi = ei}i≤n. Then in particular,

hn ≡ en[h1/x1, . . . ,hn−1/xn−1,hn/xn] = en[h1/x1, . . . ,hn−1/xn−1][hn/xn]

because xn is not free in any h1, . . . ,hn−1. This means that

hn ≡ µxn (en[h1/x1, . . . ,hn−1/xn−1])

by (R4) and guardedness of xn in en. Since xn is not free in hi for any i < n,

µxn (en[h1/x1, . . . ,hn−1/xn−1]) = (µxn en)[h1/x1, . . . ,hn−1/xn−1]

= fn[h1/x1, . . . ,hn−1/xn−1]

This makes the restriction of θ to x1, . . . ,xn−1 a solution to {xi = fi}i<n. By the

induction hypothesis, there is only one such solution, so hi ≡ gi for each i < n. It

follows that

hn ≡ µxn (en[h1/x1, . . . ,hn−1/xn−1])≡ µxn (en[g1/x1, . . . ,gn−1/xn−1]) = gn

via the congruence laws. Therefore, hn ≡ gn, and overall θ ≡ ϕ.

Completeness of ≡ with respect to behavioural equivalence is now a direct

consequence of Lemma 2.5.3 and Theorems 4.4.7 and 4.4.10.

Theorem 4.4.11 (Completeness). Let e, f ∈ Exp. If ⌊⌈e⌋⌉= ⌊⌈ f ⌋⌉, then e≡ f .

One way to interpret this theorem is that the algebra (Exp/≡, [ev]≡) of process

terms modulo ≡ is isomorphic to a subalgebra of (Z,γ), or dually (Exp/≡, ε̄) is a

subcoalgebra of (Z,ζ). It is in this sense that ARB, ACF, APA, and ARB are algebras

of behaviours.

4.5 Star Fragments

In this section we study a fragment of our specification languages consisting of star ex-

pressions. These include primitive actions from Act, a form of sequential composition,

and analogues of the Kleene star. We do not aim to give a complete axiomatization

of behavioural equivalence for star expressions in the same style as Salomaa’s axioms

224 Chapter 4. Effectful Process Calculi

in Figure 2.1, as even in simple cases this is notoriously difficult (recall the difficulty

of Milner’s completeness problem from Chapter 2, or the completeness problem of

GKAT in Chapter 3). Nevertheless, we think it is valuable to extrapolate from known

examples a speculative axiomatization independent of the specification languages

from previous sections. Note that we will also see a complete axiomatization in

Section 4.5.1, although it diverges from Salomaa’s style of axiomatization and uses

an analog of the uniqueness axiom of Chapter 3 [Smo+20; BBK87].

Star expressions and their operational semantics

Fix an iterative branching theory (S,EQ, fp) and assume S consists of only constants

and binary operations. Its star fragment is the set12 StExp given by

StExp ∋ e,e1,e2 ::= c | 1 | a | e1 +σ e2 | e1e2 | e(σ)

where a ∈ Act, c ∈ S0, and σ ∈ S2.

The star fragment of an algebraic theory is a fragment of Exp in the sense that

star expressions can be thought of as shorthands for process terms, as we explain

next. In this translation, we fix a distinguished variable u ∈ Var, called the unit, which

will denote successful termination, and we also fix a variable v distinct from the unit,

which will appear in the fixed-point. The translation stp : StExp→ Exp is defined

stp(1) = u stp(a) = au stp(e1 +σ e2) = σ(stp(e1),stp(e2))

stp(e1e2) = stp(e1)[stp(e2)/u] stp(e(σ)) = µv σ(stp(e)[v/u],u)

Sequential composition of terms is associative and distributes over branching oper-

ations on the right-hand13 side: For any e1,e2, f ∈ StExp, (e1 +σ e2) f and e1 f +σ e2 f

translate to the same process term. For example, in the algebra of regular behaviours,

this is representative of the intuitive right-distribution of sequential composition over

nondeterministic choice. Similarly, the intuitively correct identities 1e = e = e1 hold

modulo translation, as well as the identity ce = c.14

The operational semantics for star expressions is given by an LM-coalgebra

12Abstractly, (StExp,ev∗) is the initial ΩM-algebra where ΩM = 1+Act+S+ Id2 +{(σ)| σ ∈ S2}× Id.
13But not on the left-hand side! Observe the difference between the processes a(b+ c) and ab+ac.
14 But not ec = c! See also the previous footnote.

4.5. Star Fragments 225

ℓ(c) = c

ℓ(1) =✓

ℓ(a) = (a,1)

ℓ(e1 +σ e2) = σ(ℓ(e1), ℓ(e2))

ℓ(e f) = p(ℓ(f),(a1,e1 f), . . . ,(an,en f))

ℓ(e(σ)) = fp u σ
(

p(u,(a1,e1e(σ)), . . . ,(an,ene(σ))),✓
)

Figure 4.4: The structure map ℓ : StExp→ LMStExp. Here, c is a constant of S, σ is a binary
operation of S, a ∈ Act, and e,ei ∈ StExp. In the last two equations, ℓ(e) =
p(✓,(a1,e1), . . . ,(an,en)) for some p ∈ S∗(✓+Act×StExp).

(StExp, ℓ) in Figure 4.4, where

LM = M(✓+Act× Id) (4.12)

Abstractly, the operational interpretation ℓ(e) of a star expression e is obtained by

translating e into a process term (also called e) and then identifying u with ✓ in ε(e).

While the notation is somewhat opaque at this level of generality, in specific instances

the map ℓ amounts to a familiar transition structure.

Example 4.5.1. The star fragment of ACF from Example 4.1.11 and Example 4.2.7

coincides with GKAT, the algebra of programs introduced in [KT08] and studied

further in [Smo+20; Sch+21]. Instantiating StExp in this context reveals the syntax

ei ::= 0 | 1 | p | e1 +A e2 | e1e2 | e(A)

for A ⊆ At and p ∈ Act, where Act = Σ from Chapter 3. This is nearly the syntax of

GKAT, the only difference being the presence of 1 and 0 instead of Boolean constants

b ∈ BExp. This is merely cosmetic, as we can just as well define b = 1+{α≤BAb} 0. 15

In this context, M = (⊥+ Id)At, and so LM ∼= (2+Act× Id)At, which is the precise

coalgebraic signature of the automaton models of GKAT expressions.

Remark 4.5.2. In Appendix A, I give back-and-forth translations between GKAT and

the star fragment of ACF. These translations are easily seen to be LM-coalgebra

homomorphisms, with M = (⊥+ Id)At. Furthermore, up to the bisimulation GKAT

axioms and the axioms for star expressions that will appear shortly, these back-and-

forth translations are inverse to one another. It is in this sense that bisimulation

GKAT is equivalent to the star fragment of ACF.
15Note that unlike the syntax currently used in the GKAT literature [Smo+20; Sch+21; KSS23;

ZSS22], this syntax is finitary without having to quotient the guards by the axioms of Boolean algebra.

226 Chapter 4. Effectful Process Calculi

Example 4.5.3. The star fragment of APA from Example 4.1.12 and Example 4.2.8

gives a sort of “coin-flip” version of regular expressions, with an iteration operator

for each p ∈ [0,1]. Instantiating StExp in this context reveals the syntax

ei ::= 0 | 1 | a | e1⊕r e2 | e1e2 | e[r]

for r ∈ [0,1] and a ∈ Act. The process e[r] can be thought of as a generalized Bernoulli

process that runs e until it reaches ✓ and then flips a weighted coin to decide whether

to start from the beginning of e or to terminate successfully.

Example 4.5.4. A sort of combination of the previous two examples is probabilistic

guarded Kleene algebra with tests (ProbGKAT) [Róż+23]. Fix a set of output values

Out and atoms At and define

S = {0}+Out+[0,1]× Id2 +2At× Id2

PG = CA∪GA∪{x⊕r (y+b z) = (x⊕r z)+b (y⊕r z) | b⊆ At}

The monad presented by (S,PG) is the set of At-indexed subdistributions over Out+ Id,

(D(⊥+Out+ Id)At,λα.δ(−),λα.∆α). That is, given a set X ,

(λα.δ(−))X(x)(α) = δx

(λα.∆α)X(Φ)(α)(ξ) = ∑
θ

Φ(α)(θ) ·θ(α)(ξ)

This can be turned into an iterative branching theory by adding a reduction operator

whose action on the monad is

(fp x θ)(α)(ξ) =

0 ξ = u or θ(α)(u) = 1

θ(α)(ξ)
1−θ(α)(x) otherwise

The resulting syntax is

e,e1,e2 ::= 0 | 1 | c ∈ Out | p ∈ Act | e1 +A e2 | e1⊕r e2 | e f | e(A) | e[r]

for A⊆ At and r ∈ [0,1], which is equivalent to the one found in [Róż+23] so long as

we allow for the shorthand b = 1+{α≤BAb} 0 like in Example 4.5.1.

4.5. Star Fragments 227

Axioms for star expressions

We now provide a candidate axiomatization for the star fragment while leaving the

question of completeness open. Say that a star expression e is guarded if the unit is

guarded in e as an expression in Exp. We define EQ∗ to be the theory consisting of

EQ, the axioms

(EQ∗1) 1e = e1 = e

(EQ∗2) ce = c

(EQ∗3) e1(e2e3) = (e1e2)e3

(EQ∗4) e(σ)
1 e2 = e1e(σ)

1 e2 +σ e2

where c ∈ S0, σ ∈ S2, and p(x, y⃗) ∈ S∗X , and the inference rules

(∀i≤ n) gi is guarded
(EQ∗5)

p(1, g⃗)(σ) = fp u (p(u, g⃗p(1, g⃗)(σ))+σ 1)

g = eg+σ f e is guarded
(EQ∗6)

g = e(σ) f

The resulting system EQ∗ is equivalent to bisimulation GKAT (Figure 3.5) when

instantiated to guarded algebras (verifying this claim is the subject of Appendix A),

equivalent to Milner’s axiomatization of regular expressions modulo bisimilarity

(Section 2.1) when instantiated to semilattices with bottom (see Example 4.1.7), and

equivalent to the axioms of ProbGKAT [Róż+23] when instantiated to the iterative

branching theory in Example 4.5.4.16

Write (Z,ζ) for the final LM-coalgebra, and !β : (X ,β)→ (Z,ζ) for the unique

coalgebra homomorphism from an LM-coalgebra (X ,β) into (Z,ζ). The operational

semantics of star expressions is given by the behaviour map !ℓ : (StExp, ℓ)→ (Z,ζ).

Theorem 4.5.5 (Soundness). Let e, f ∈ StExp. If EQ∗ ⊢ e = f , then !ℓ(e) = !ℓ(f).

Proof. We begin by observing that the natural inclusion in : LM ↪→ BM witnesses the

following: Given LM-coalgebras (X ,βX),(Y,βY), and states x ∈ X and y ∈ Y , x and

y are behaviourally equivalent if and only if they are behaviourally equivalent as

states of BM-coalgebras in∗(X ,βX) and in∗(Y,βY) respectively. It therefore suffices to

check two things: (1) The translation map stp : in∗(StExp, ℓ) ↪→ (Exp,ε) is an injective

BM-coalgebra homomorphism, and (2) that each axiom of EQ∗ is taken to an equation

16This framework is actually the origin of ProbGKAT. ProbGKAT is studied in detail in [Róż+23],
where decidability is also addressed.

228 Chapter 4. Effectful Process Calculi

provable in EFA by the translation map stp.

Statement (1) amounts to checking the equation

ε ◦ stp(e) = in◦LM(stp)◦ ℓ(e) (4.13)

This can be checked by induction on star expressions. The only interesting cases are

the sequential composition and star cases. Assume (4.13) holds for subexpressions

of e and f , and let ℓ(e) = p(✓,(a1,g1), . . . ,(an,gn)). Then

in◦LM(stp)◦ ℓ(e) = p(u,(a1,stp(g1)), . . . ,(an,stp(gn)))

Using this identity, we can deduce the following:

in◦LM(stp)◦ ℓ(e f) = in◦LM(stp)(p(ℓ(f),(a1,g1 f), . . . ,(an,gn f)))

= in(p(LM(stp)◦ ℓ(f),(a1,stp(g1 f)), . . . ,(an,stp(gn f))))

= p(in◦LM(stp)◦ ℓ(f),(a1,stp(g1 f)), . . . ,(an,stp(gn f)))

= p(ε ◦ stp(f),(a1,stp(g1 f)), . . . ,(an,stp(gn f)))

= p(ε ◦ stp(f),(a1,stp(g1)[stp(f)/u]), . . . ,(an,stp(gn)[stp(f)/u]))

= ε(stp(e)[stp(f)/u])

= ε ◦ stp(e f)

For the star case,

in◦LM(stp)◦ ℓ(e(σ))

= in◦LM(stp)(fp u σ(p(u,(a1,e1e(σ)), . . . ,(an,ene(σ))),✓))

= in
(
fp u σ(p(u,(a1,stp(e1e(σ))), . . . ,(an,stp(ene(σ)))),✓)

)
= in

(
fp v σ(p(v,(a1,stp(e1)[stp(e(σ))/u]), . . . ,(an,stp(en)[stp(e(σ))/u])),✓)

)
= fp v σ(p(v,(a1,stp(e1)[stp(e(σ))/u]), . . . ,(an,stp(en)[stp(e(σ))/u])),u)

= fp v σ(p(v,(a1,stp(e1)), . . . ,(an,stp(en))),u)[stp(e(σ))//u]

= fp v σ(p(v,(a1,stp(e1)), . . . ,(an,stp(en))),u)[µv σ(stp(e)[v/u],u)//u]

= fp v ε(σ(stp(e)[v/u],u))[µv σ(stp(e)[v/u],u)//u]

= ε(µv σ(stp(e)[v/u],u))

4.5. Star Fragments 229

= ε ◦ stp(e(σ))

This concludes the proof of (1). To see that (2) holds, check each axiom individually.

The most interesting cases are (EQ∗3)-(EQ∗6).

Actually, (EQ∗3) is a consequence of substitution being associative. That is, for

e1,e2,e3 ∈ Exp, we always have

e1[e2[e3/u]/u] = e1[e2/u][e3/u]

where equality here is explicit equality of terms. The rule (EQ∗4) is not quite as

straightforward. Let e1,e2 ∈ StExp now, and compute

EFA ⊢ stp(e(σ)
1 e2) = stp(e(σ)

1)[stp(e2)/u]

= µv σ(stp(e1)[v/u],u)[stp(e2)/u]

= µv σ(stp(e1)[v/u],stp(e2))

= σ(stp(e1)[v/u],stp(e2))[µv σ(stp(e1)[v/u],stp(e2))/v] (R1)

= σ(stp(e1)[v/u][µv σ(stp(e1)[v/u],stp(e2))/v],stp(e2))

= σ(stp(e1)[µv σ(stp(e1)[v/u],stp(e2))/u],stp(e2))

= σ(stp(e1)[stp(e(σ)
1 e2)/u],stp(e2))

= stp(e1(e
(σ)
1 e2)+σ e2)

Next we check (EQ∗5). If g1, . . . ,gn are guarded star expressions, then

EFA ⊢ stp(p(1, g⃗)(σ)) = µv σ(p(v,stp(⃗g)[v/u]),u)

= µv (fp v σ(p(v,stp(⃗g)[v/u]),u)) (R3)

= fp v σ(p(v,stp(⃗g)[µv σ(p(v,stp(⃗g)[v/u]),u)/u]),u)

= fp v σ(p(v,stp(⃗g)[stp(p(v, g⃗))/u]),u)

= fp v σ(p(v,stp(⃗gp(v, g⃗))),u)

= stp(fp v p(v, g⃗p(v, g⃗))+σ 1)

Finally, (EQ∗6) translates directly into (R4).

230 Chapter 4. Effectful Process Calculi

Grabmayer’s Theorem 2.1.9 [Gra22] implies that the theory of semilattices SL∗

is furthermore complete for behavioural equivalence, and the research literature

appears to be closing in fast on a proof of the completeness of bisimulation GKAT

(here, GA∗). We are also confident that a completeness result can be obtained in

other instances of the framework for the axiomatization we have suggested above.

Question 1. Let (S,EQ, fp) be an iterative branching theory. If e and f are be-

haviourally equivalent star expressions, is it true that EQ∗ ⊢ e = f ?

Restricting to specifically the one-free star expressions (like in Chapters 2 and 3),

this question is even more potent, given the positive results covered in previous

chapters. In Chapter 2, we saw that the one-free fragment of SL∗ is a complete

axiomatization of one-free regular expressions modulo bisimilarity (Theorem 2.4.13),

and in Chapter 3 we saw that the one-free (i.e., skip-free) adaptation of GA∗ is a

complete axiomatization of skip-free bisimulation GKAT (Theorem 3.2.18).

Question 2. Let (S,EQ, fp) be an iterative branching theory. Define the one-free star

expressions StExp− by the grammar

e1,e2 ::= a ∈ Act | c ∈ S0 | e1e2 | e1 +σ e2 | e1
(σ) e2

where S0 contains the constants of S and with σ ∈ S2. We obtain the axiomatization

EQ∗0 from EQ∗ by deleting (EQ∗1) and (EQ∗5). If e, f ∈ StExp− are behaviourally

equivalent, is it true that EQ∗0 ⊢ e = f ?

4.5.1 One Last Completeness Theorem

In this final technical subsection, we provide partial answers to Question 1 and

Question 2 above. We prove a completeness theorem for star fragments with an

additional axiom scheme that guarantees at most one solution to every finite system of

equations, generalizing the uniqueness axiom in Chapter 3. Again, our completeness

theorem will follow the structure of Lemma 2.5.3, which requires that we show

that certain systems of equations are solvable. We make use of the following more

succinct depiction of systems of equations, akin to the flat systems of equations from

the iteration theories literature [BE76; BM96].

4.5. Star Fragments 231

Given a set X , define StExp(X) to be the set of terms given by the grammar

StExp(X) ∋ t1, t2, t ::= c ∈ S1 | ξ1 +σ ξ2 ξ1,ξ2 ::= ex | t

where e ∈ StExp and x ∈ X .

Definition 4.5.6. A left-affine system of equations is a function α : X → StExp(X). We

call α finite if X is finite, and we call α Salomaa if for every x ∈ X and every f y that

appears in α(x), f is a guarded star expression. Given an equivalence relation ≈

on StExp, A ≈-solution to α is a function ϕ : X → StExp such that for every x ∈ X ,

ϕ(x)≈ ϕ# ◦α(x), where ϕ# : StExp(X)→ StExp is defined

ϕ
#(c) = c ϕ

#(ex) = eϕ(x) ϕ
#(t1 +σ t2) = ϕ

#(t1)+σ ϕ
#(t2)

for any c ∈ StExp, e ∈ StExp, x ∈ X . Two ≈-solutions ϕ1,ϕ2 to α are ≈-equivalent,

written ϕ1 ≈ ϕ2, if ϕ1(x)≈ ϕ2(x) for all x ∈ X .

Definition 4.5.7. The generalized uniqueness axiom is the axiom scheme that states

that up to provable equivalence, there is at most one solution to every finite Salomaa

left-affine system. We write ≡+ for the smallest congruence that contains the axioms

of EQ∗ and satisfies the generalized uniqueness axiom.

This is, in fact, sound with respect to behavioural equivalence.

Lemma 4.5.8. The congruence ≡+ is the kernel of a coalgebra homomorphism.

Proof. We need to fill in the diagram below

StExp StExp/≡+

LMStExp LM(StExp/≡+)

[−]≡+

ℓ ℓ̄

LM([−]≡+)

(4.14)

Like in the proof of Lemma 4.4.3, ensuring that such a ℓ̄ exists amounts to showing

that whenever e≡+ f ,

LM([−]≡+)◦ ℓ(e) = LM([−]≡+)◦ ℓ(f) (4.15)

We proceed by induction on the proof of e≡+ f .

232 Chapter 4. Effectful Process Calculi

In the base case, we have to check each of the equational axioms of EQ∗. For

(p(⃗x),q(⃗x)) ∈ EQ with x⃗ = (x1, . . . ,xn), we have ℓ(p(⃗e)) = ℓ(q(⃗e)) for any e⃗ ∈ StExpn.

For (EQ∗1), we have

ℓ(1e) = p(ℓ(e),(a1,e1), . . . ,(anen)) = ℓ(e)

where ℓ(1) = p(✓,(a1,e1), . . . ,(an,en)) = ✓. On the other hand, if ℓ(e) =

p(✓,(a1,e1), . . . ,(an,en)), then

LM([−]≡+)◦ ℓ(e1) = p(ℓ(1),(a1, [e11]≡+), . . . ,(an, [en1]≡+))

= p(✓,(a1, [e11]≡+), . . . ,(an, [en1]≡+))

= p(✓,(a1, [e1]≡+), . . . ,(an, [en]≡+))

= LM([−]≡+)◦ ℓ(e)

Applying LM([−]≡+), this is equivalent to ℓ(e). For (EQ∗2), we know that ℓ(c) = c,

so ℓ(ce) = c = ℓ(c). For (EQ∗3), let ℓ(e1) = p(✓,(a1,e11), . . . ,(an,e1n)) and ℓ(e2) =

q(✓,(b1,e21), . . . ,(bm,e2m)). Then

LM([−]≡+)◦ ℓ(e1(e2e3)) = p(ℓ(e2e3),(a1, [e11(e2e3)]
+
≡), . . . ,(an, [e1n(e2e3)]≡+))

= p(q(ℓ(e3),(b1, [e21e3]≡+), . . . ,(bm, [e2me3]≡+)),

(a1, [e11(e2e3)]≡+), . . . ,(an, [e1n(e2e3)]≡+))

= p(q(ℓ(e3),(b1, [e21e3]≡+), . . . ,(bm, [e2me3]≡+)),

(a1, [(e11e2)e3]≡+), . . . ,(an, [(e1ne2)e3]≡+)) (EQ∗3)

= LM([−]≡+)◦ ℓ((e1e2)e3)

For (EQ∗4), we compute

ℓ(e1
(σ)e2) = fp u σ(p(u,(a1,(e11e1

(σ))e2), . . . ,(an,(e1ne1
(σ))e2)), ℓ(e2))

= σ(p(fp u σ(p(u,(a1,(e11e1
(σ))e2), . . . ,(an,(e1ne1

(σ))e2)), ℓ(e2)),

(a1,(e11e1
(σ))e2), . . . ,(an,(e1ne1

(σ))e2)), ℓ(e2))

= σ(p(ℓ(e1
(σ)e2),(a1,(e11e1

(σ))e2), . . . ,(an,(e1ne1
(σ))e2)), ℓ(e2))

= ℓ((e1e1
(σ))e2 +σ e2)

4.5. Star Fragments 233

For (EQ∗5), assume g1, . . . ,gn are guarded, and let ℓ(gi) = qi((ai1,gi1), . . . ,(aimi ,gimi)).

Then compute

ℓ(p(1, g⃗)(σ)) = fp u σ(p(u,q1((a1 j,g1 j p(1, g⃗)(σ))), . . . ,qn((an j,gn j p(1, g⃗)(σ)))),✓)

= fp u σ(p(u, ℓ(g1 p(1, g⃗)(σ)), . . . , ℓ(gn p(1, g⃗)(σ))),✓)

= ℓ(fp u σ(p(u,g1 p(1, g⃗)(σ), . . . ,gn p(1, g⃗)(σ)),✓))

since ℓ is an S-algebra homomorphism.

We skip (EQ∗6) and prove that if the final step in the proof of e ≡+ f is an

application of the generalized uniqueness axiom, then (4.15) holds. The generalized

uniqueness axiom subsumes (EQ∗6), since (EQ∗6) is the generalized uniqueness

axiom in the special case where the set of indeterminates in the Salomaa left-affine

system has only one element.

Finally, suppose that ϕ1,ϕ2 are the ≡+-solutions to a finite Salomaa left-affine

system of equations α : X→ StExp(X) that witnesses e≡+ f . The induction hypothesis

tells us that for any x ∈ X ,

LM([−]≡+)◦ ℓ(ϕi(x)) = LM([−]≡+)◦ ℓ(ϕ#
i (α(x)))

where i ∈ {1,2}. We need to show that this implies LM([−]≡+)◦ ℓ◦ϕ1 = LM([−]≡+)◦

ℓ ◦ϕ2. To this end, let x ∈ X and α(x) = p(e1x1, . . . ,enxn, f) with e1, . . . ,en guarded.

Furthermore, let ℓ(ei) = qi((ai1,ei1), . . . ,(aimi ,eimi)). Then

LM([−]≡+)◦ ℓ(ϕ1(x))

= LM([−]≡+)◦ ℓ(ϕ#
1 (α(x)))

= LM([−]≡+)◦ ℓ(p(e1ϕ1(x1), . . . ,enϕ1(xn), f))

= p(LM([−]≡+)◦ ℓ(e1ϕ1(x1)), . . . ,LM([−]≡+)◦ ℓ(enϕ1(xn)),

LM([−]≡+)◦ ℓ(f))

= p(q1((a11, [e11ϕ1(x1)]≡+), . . . ,(a1m1 , [e1m1ϕ1(xn)]≡+)), . . . ,

qn((an1, [en1ϕ1(x1)]≡+), . . . ,(anmn , [enmnϕ1(xn)]≡+)),

LM([−]≡+)◦ ℓ(f))

= p(q1((a11, [e11ϕ2(x1)]≡+), . . . ,(a1m1 , [e1m1ϕ2(xn)]≡+)), . . . ,

234 Chapter 4. Effectful Process Calculi

qn((an1, [en1ϕ2(x1)]≡+), . . . ,(anmn , [enmnϕ2(xn)]≡+)),

LM([−]≡+)◦ ℓ(f)) (UA)

= LM([−]≡+)◦ ℓ(ϕ#
2 (α(x)))

= LM([−]≡+)◦ ℓ(ϕ2(x))

as desired. This concludes the proof of the lemma.

Similar to how Lemma 4.4.3 implies the soundness of our axiomatization of

effectful process algebra, Lemma 4.5.8 immediately implies the soundness of EQ∗.

Theorem 4.5.9 (Soundness). For e, f ∈ StExp, if e≡+ f , then !ℓ(e) = !ℓ(f).

Completeness

To establish the completeness of ≡+, we are going to follow the completeness proof

of bisimulation GKAT with the uniqueness axiom (Section 3.1). The crux of the com-

pleteness proof is a one-to-one correspondence between coalgebra homomorphisms

into (StExp/≡+, [ℓ]≡+) and solutions to left-affine systems of equations specified by

LM-coalgebras. By the generalized uniqueness axiom, this tells us that LM-coalgebras

admit at most one homomorphism into (StExp/≡+, [ℓ]≡+).

Up to EQ, every finite LM-coalgebra (X ,δ) corresponds to a Salomaa left-affine

system of equations δ̂ : X → StExp(X) obtained by letting δ̂ (x) be a term representing

δ (x) in S∗(1+Act×X) ⊆ StExp(X). Up to EQ, δ̂ is uniquely defined by this choice.

The following lemma is the one-to-one correspondence we need.

Lemma 4.5.10. Let (X ,δ) be a finite LM-coalgebra. Then a function ϕ : X → StExp is

a ≡+-solution to (X , δ̂) if and only if [−]≡+ ◦ϕ is a coalgebra homomorphism.

Like before, we need a version of the fundamental theorem in the proof of

Lemma 4.5.10. This can be stated as follows.

Lemma 4.5.11. Let e ∈ StExp and ℓ(e) = p(✓,(a1,e1), . . . ,(an,en)). Then we have the

provable equivalence e≡+ p(1,a1e1, . . .anen).

Of course, here we are taking σ(x,y) and x+σ y to be synonymous.

Proof. By induction on e. In the base cases, we have ℓ(c) = c and ℓ(1) = ✓,

both trivial. In the induction hypothesis, assume the result for e, f and let

4.5. Star Fragments 235

ℓ(e) = p(✓,(a1,e1), . . . ,(an,en)) and ℓ(f) = q(✓,(b1, f1), . . . ,(bn, fn)). Then by the in-

duction hypothesis,

e+σ f ≡+ p(1,a1e1, . . . ,anen)+σ q(1,b1 f1, . . . ,bn fn)

ℓ(e+σ f) = σ(p(✓,(a1,e1), . . . ,(an,en)),q(✓,(b1, f1), . . . ,(bn, fn)))

and in the sequential composition case,

e f ≡+ p(1,a1e1, . . . ,anen) f

≡+ p(f ,a1e1 f , . . . ,anen f)

≡+ p(q(1,b1 f1, . . . ,bn fn),a1e1 f , . . . ,anen f)

ℓ(e f) = p(ℓ(f),(a1,e1 f), . . . ,(an,en f))

= p(q(✓,(b1, f1), . . . ,(bn, fn)),(a1,e1 f), . . . ,(an,en f))

For the star case, we first consider the case where e is guarded. Using (EQ∗4),

e(σ) ≡+ ee(σ)+σ 1

≡+ p(a1e1, . . . ,anen)e(σ)+σ 1

≡+ p(a1e1e(σ), . . . ,anene(σ))+σ 1

ℓ(e(σ)) = fp u p((a1,e1e(σ)), . . . ,(an,ene(σ)))

= p((a1,e1e(σ)), . . . ,(an,ene(σ)))

In case e is not guarded, we need to find a guarded f ∈ StExp such that e(σ) ≡+ f (σ).

We can find such an f by writing e in the form p(1, g⃗) for some guarded g1, . . . ,gn and

some S-term p, and then using (EQ∗5) to show that the desired f is fp u p(u, g⃗). This

term p and tuple of guarded expressions g⃗ can be constructed by induction on e.

Proof of Lemma 4.5.10. Let (X ,δ) be a finite LM-coalgebra, and let ϕ : X → StExp.

Observe that if δ (x)= p(✓,(a1,x1), . . . ,(an,xn)) and ℓ(ϕ(x))= q(1,(b1, f1), . . . ,(bm, fm)),

then

LM([−]≡+ ◦ϕ)◦δ (x) = LM([−]≡+ ◦ϕ)(p(✓,(a1,x1), . . . ,(an,xn)))

= p(✓,(a1, [ϕ(x1)]≡+), . . . ,(an, [ϕ(xn)]≡+))

236 Chapter 4. Effectful Process Calculi

ℓ̄◦ [−]≡+ ◦ϕ(x) = L([−]≡+)◦ ℓ◦ϕ(x)

= q(✓,(b1, [f1]≡+), . . . ,(bm, [fm]≡+))

Observe that by the fundamental theorem, ϕ(x) ≡+ q(1,b1 f1, . . . ,bm fm). So,

if [−]≡+ ◦ ϕ is a homomorphism, then p(✓,(a1, [ϕ(x1)]≡+), . . . ,(an, [ϕ(xn)]≡+)) =

q(✓,(b1, [f1]≡+), . . . ,(bm, [fm]≡+)), which in particular means that

p(1,a1ϕ(x1), . . . ,anϕ(xn))≡+ q(1,b1 f1, . . . ,bm fm)≡+
ϕ(x)

Since x is arbitrary, ϕ is a ≡+-solution. Conversely, suppose ϕ is a ≡+-

solution. Then ϕ(x) ≡+ p(1,a1ϕ(x1), . . . ,anϕ(xn)), or equivalently, [−]≡+ ◦ ϕ(x) =

p(1, [a1ϕ(x1)]≡+ , . . . , [anϕ(xn)]≡+). Applying ℓ̄ to both sides gives

ℓ̄◦ [−]≡+ ◦ϕ(x) = p(1,(a1, [ϕ(x1)]≡+), . . . ,(an, [ϕ(xn)]≡+)) = LM([−]≡+ ◦ϕ)◦δ (x)

Under mild conditions on the algebraic theory (S,EQ), the generalized unique-

ness axiom allows for a complete axiomatization of behavioural equivalence.

Theorem 4.5.12 (Completeness). Suppose M preserves weak pullbacks, and let e and

f be star expressions. If !ℓ(e) = !ℓ(f), then e≡+ f .

Proof. Suppose !ℓ(e) = !ℓ(f). Recall that when B is a functor that preserves weak

pullbacks, two states of a B-coalgebra are behaviourally equivalent if and only if

they are bisimilar. The functor ✓+Act× (−) preserves weak pullbacks, because it is

polynomial [Rut00]. We have also assumed that M preserves weak pullbacks, and

the composition of two weak pullback-preserving functors preserves weak pullbacks.

It follows that LM = M(✓+Act× (−)) preserves weak pullbacks. Thus, e↔ f .

Let (R,δR) be a bisimulation on ⟨e⟩×⟨ f ⟩ that witnesses e↔ f . Then R is finite,

and so by the generalized uniqueness axiom, δ̂R : R→ StExp has at most one solution.

Let π1,π2 be the projections of R onto ⟨e⟩ and ⟨ f ⟩ respectively. Then [−]≈+ ◦π1, [−]≈+ ◦

π2 are homomorphisms, so π1,π2 are solutions to δ̂R. By the generalized uniqueness

axiom, π1 ≡+ π2, so e≡+ f .

4.6. Related Work 237

4.6 Related Work

Our framework can be seen as a generalization of Milner’s ARB [Mil84] that reaches

beyond nondeterministic choice and covers other process algebras already identified

in the literature. For example, instantiating our framework in the theory of pointed

convex algebras produces the algebra we have called APA (see Example 4.2.8),

which appears to be very similar to the process calculus introduced by Stark and

Smolka [SS00]. Instantiating our framework in the theory CS⊤ of convex semilattices

with top (see Example 4.1.14) produces a calculus that appears to be very similar to

the calculus of Mislove, Ouaknine, and Worrell [MOW03]. In fact, I conjecture that

APA is equivalent to Stark and Smolka’s calculus (in the sense that the same equations

are provable) and that the calculus for CS⊤ is equivalent to (the equational part of)

Mislove et al.’s calculus. More work needs to be done to verify these conjectures. The

calculus obtained from the theory of pointed convex semilattices (Example 4.2.9)

appears to be new.

Algebraic effects

Throughout the thesis, I have made use of the terms effect and branching. Both terms

are used in related literature. I have chosen to use them slightly differently.

The term effect comes from Plotkin and Power’s algebraic effects [PP02], which

are a refinement of Moggi’s notions of computation [Mog89; Mog91]. Roughly, an

algebraic effect is a computation type captured by a monad on a monoidal category

that is presented by an algebraic theory. Examples of algebraic effects include

nondeterminism, if-then-else, probabilities, exceptions, and input/output. Algebraic

effects are specified syntactically using algebraic operations, the same way our effects

are specified algebraically. An algebraic presentation of a monad M furthermore

induces a canonical strength on the monad, a natural transformation of the form

X⊗MY ⇒M(X⊗Y) that satisfies certain coherence conditions, where ⊗ is a given

monoidal product on the underlying category. If ⊗ is the usual Cartesian product ×

and p(⃗y) is a term representing an element of MY , the canonical strength can roughly

be though of as the map

(x, p(y1, . . . ,yn)) 7−→ p((x,y1), · · · ,(x,yn))

238 Chapter 4. Effectful Process Calculi

In the literature, the term effect typically refers to a monad equipped with a

strength [Koc70; PP02]. Every of the monads we study in the thesis (in fact, every

monad on Set) admits a strength, so our usage of the word effect is not wholly

inconsistent with its use in the literature. We simply do not have any use for monad

strengths at any point in the thesis.

The word branching also has a wider connotation, usually referring to commuta-

tive monads (see, for example [Cîr17]). Commutative monads are strong monads that

capture algebraic effects with commutative algebraic operations, like nondeterminism

(captured by the free semilattice construction) and probabilities (real numbers form a

commutative semiring). We diverge significantly from the literature and use branch-

ing to refer to any algebraically structured set of outgoing state transitions instead,

in reference to the tree-like structure of program behaviours (see Section 4.3.1 for

example). This should not introduce any confusion, as commutativity does not play

a role in this thesis: The monads capturing nondeterminism and probabilities are

commutative, but the monad capturing if-then-else (in Example 4.1.11) is not.

Star expressions

Star expressions for nondeterministic processes appeared in the work of Mil-

ner [Mil84] and can be thought of as a bisimulation-focused analogue of Kleene’s

regular expressions for NFAs. While the syntaxes of Milner’s star expressions and

Kleene’s regular expressions are the same, there are several important differences

between their interpretations: For example, sequential composition is interpreted

as the variable substitution e f := e[f/u] in Milner’s paper, which fails to distribute

over + on the left. A notable insight from [Mil84] is that, despite these differences,

an iteration operator (−)∗ can be defined for Milner’s star expressions that satisfies

many of the same identities as the Kleene star.

Given a variable v distinct from u (the unit), and a process term e of ARB such

that fv(e) ⊆ {u}, e∗ := µv (e[v/u]+u) defines the iteration operator in Milner’s star

fragment of ARB. In Section 4.5, we generalized this construction of Milner for the

more general process types that we considered in this paper. The axiomatization

EQ∗ is also inspired by Milner’s (and Salomaa’s [Sal66]) work. We expect a general

completeness theorem for star fragments is a hard problem, as completeness in the

instantiation to ARB was open for decades despite the extensive literature on the

4.6. Related Work 239

subject [FZ94; Fok97; FZ97; BCG06; GF20; Gra22].

Kleene coalgebra

There are clear parallels between our work, the thesis of Silva (titled Kleene coalge-

bra) [Sil10], and its generalization to other categories than Set [Mil10; BMS13]. In

this line of work, a family of calculi is introduced that generalizes Milner’s process

calculus (what we have called ARB) and includes one-exit17 versions of ARB, ACF,

and APA (see Examples 4.1.7, 4.2.7 and 4.2.8). Our work in this chapter generalizes

Milner’s process calculus in a different direction: Our framework is parametric on a

finitary monad on Set, whereas Silva’s is centred around one particular theory (semi-

lattices) and provides specification languages for coalgebras of general polynomial

functors on Set. The coalgebraic signatures captured by effectful process algebra do

not currently include all such functors.

Our results are also in the same vein as the work of Myers on coalgebraic

expressions [Mye09]. Coalgebraic expressions generalize the calculi of [Sil10] to

arbitrary finitary coalgebraic signatures on a variety of algebras, and furthermore

have totally defined recursion operators similar to ours. However, the focus of the

framework of coalgebraic expressions is on language semantics, achieved by lifting

the coalgebraic signature to a variety. This distinguishes the framework from our

approach, since we focus on bisimulation semantics.

Iterative theories and Elgot monads

Finally, there is also a notable connection to the iterative theories of Elgot [Elg75],

Bloom and Ésik [BE76; BÉ88], and Nelson [Nel83]. The notion of an iterative branch-

ing theory (Definition 4.1.9) is a direct adaptation of Adamék, Milius, and Velebil’s

notion of Elgot monad [AMV11] to the specific situation of recursive specifications in

one variable, like x = x⊕ 1
2

y in the case of convex algebra. Moreover, Theorem 4.4.10

implies that effectful process calculi (that include arbitrary µ operators) are examples

of iterative algebras.

The main difference between effectful process calculi and iteration theories

is that effectful process calculi use single-variable fixed-point operators (µv) to

resolve recursive specifications, instead of working with recursive specifications

17There is a constant 1 for successful termination, instead of the set of output variables we allow.

240 Chapter 4. Effectful Process Calculi

directly. The restriction to single-variable fixed-points allows for an unrestricted

syntax and an algebraic workflow when reasoning about program equivalence. It

is also worth noting that many of the desirable properties of (equational) iteration

theories are consequences of the uniqueness of guarded fixed-points constructed with

the single-variable fixed-point operators. For example, Theorem 4.4.10 is a version of

Bekić’s lemma [Bek84], which allows for least fixed-points of multivariate recursive

specifications to be computed one variable at a time.

Another thing that sets the effectful process algebra framework apart from the

iteration theories mentioned is that interesting fragments of effectful process calculi

are easily identifiable by syntactic constructions. Star fragments and their one-free

counterparts are notable examples. For contrast, to identify a particular fragment

of an iterative algebra requires structural constraints on the systems of equations

that can be solved in that fragment [Nel83]. This can be very difficult: One of the

open problems posed by Milner in [Mil84] asks for a structural characterization

of systems solvable in regular expressions modulo bisimilarity. One solution was

given by Baeten, Corradini, and Grabmayer in [BCG07]. Another solution to this

structural characterization problem is at the heart of Grabmayer’s solution to Milner’s

completeness problem [Gra22], where Grabmayer gives an intricate characteriza-

tion of the labelled transition systems that have unique solutions in the algebra of

regular expressions modulo bisimilarity (these play a similar role to the LLEE-charts

of [GF20], which we renamed to well-layered precharts in Chapter 2).

Chapter 5

Conclusions and Future Work

In this thesis, we proved a number of completeness theorems for coalgebraic process

calculi. We used several proof techniques, including the local and global approaches

that were introduced in Chapter 2 and a technique that originates in the work of

Salomaa [Sal66]. We also saw several reductions of one completeness problem

to another: In Chapter 3, for example, we reduced the completeness of skip-free

bisimulation GKAT (propositional while programs without a skip command) to the

completeness theorem of regular expressions modulo bisimilarity due to Grabmayer

and Fokkink [GF20]. The structural characterization of completeness theorems given

in Chapter 2 was the key ingredient of the main completeness proof in Chapter 4,

where I gave a uniform sound and complete axiomatization of behavioural equiva-

lence in effectful process calculi, generalizing several examples from the literature.

Effectful process calculi

I call the process calculi introduced in Chapter 4 effectful, in reference to Plotkin

and Power’s algebraic effects [PP02]1, because they are parametrized by algebraic

theories. Effectful process calculi present a new perspective on several examples

from the literature. For example, skip-free GKAT expressions make up a fragment

of an effectful process calculus called ACF, which is obtained from the theory of

guarded algebra (Example 4.1.11). One-free regular expressions, on the other

hand, make up a fragment of the effectful process calculus ARB, obtained from the

theory of semilattices with bottom. Our reduction of skip-free GKAT to one-free

regular expressions modulo bisimilarity was obtained from an embedding of guarded

1The broader usage of the word effect is discussed under the Algebraic effects heading in the related
work section, Section 4.6.

242 Chapter 5. Conclusions and Future Work

algebras into semilattices. In other words, this reduction was the result of treating

the computational effects in these two calculi as first-class objects.

Completeness for star fragments

Regular expressions and GKAT expressions make up a special kind of fragment of

their respective effectful process calculi, what we have called a star fragment. In

Section 4.5.1 of Chapter 4, we saw that under a mild condition on the computational

effect, a complete axiomatization of bisimilarity in star fragments of effectful process

calculi can be obtained from a powerful axiom scheme called the (generalized)

uniqueness axiom. The two completeness theorems of GKAT in Chapter 3 can both

be derived from this completeness result for star fragments.

One drawback of the uniqueness axiom for star fragments is that it is difficult

to apply in equivalence proofs. In [Mil84], Milner proposes an axiomatization of

regular expressions modulo bisimilarity that is equivalent to an instance of our

general axiomatization without the uniqueness axiom, and asks if his proposed

axiomatization is complete. It took 38 years to answer this question [Gra22], despite

intensive research efforts.

A similar problem was posed by Smolka et al. in [Smo+20], who asked whether

the axioms of GKAT are complete for language equivalence. As we saw in Chapter 3,

the completeness of GKAT can be reduced to the completeness of bisimulation GKAT,

an instance of the star fragment construction. The completeness problems for both

GKAT and bisimulation GKAT remain open.

Without a doubt, establishing the completeness of our axiomatization of bisimi-

larity (without the uniqueness axiom) in a given star fragment presents a difficult

problem. Only one instance of this general completeness problem has been solved

(Milner’s completeness problem), so there is much work left to do.

5.1 Future Work

To finish, I would like to discuss possible further directions and speculate on the

future of each of the research programs addressed in the thesis.

5.1.1 Coequations

A theorem of Rutten [Rut00] says that a class of coalgebras is closed under subcoal-

gebras, coproducts, and homomorphic images if and only if it is a covariety, a class of

5.1. Future Work 243

coalgebras presented by a coequation in some number of colours. This is the dual of

Birkhoff’s HSP-theorem [Bir35]. The number of colours needed to present a covariety

is (dually) analogous to the number of free variables needed to write an equational

presentation of a variety. The first two research directions I would like to discuss deal

with coequations.

Direction 1: Coequations and well-layeredness

In the first research direction, I would like to see a concrete description of a coequa-

tion that presents the covariety of locally well-layered precharts. The final L-coalgebra

is a cofree coalgebra in one colour (it is a behavioural covariety [DS21]), so an initial

guess at the coequation presenting the class of locally well-layered precharts might

be the set of behaviours exhibited by well-layered precharts. However, a covariety

presented by a coequation in one colour is closed under bisimilarity [GS01], which

we know from Figure 2.5 is not true for locally well-layered precharts.

This leads us to the following question: How many colours are needed to

characterize the covariety of locally well-layered precharts? I conjecture that the

answer is infinite (specifically ω), because it is likely that the number of colours that

need to appear in a specific prechart to ensure well-layeredness is proportional to the

depth of the shallowest ↷-graph of its layering witnesses (see Definition 2.4.2).

Direction 2: Coequations and completeness

The practicality of coequations in the pursuit of completeness theorems is not well-

understood. In Chapter 2, we saw that the completeness proof of Grabmayer and

Fokkink implicitly begins with a description of (what amounts to) a covariety, the

covariety of locally well-layered precharts, but no concrete description of the coequa-

tion presenting this covariety is known. It would be interesting to see an example

of a completeness proof that starts with a description of a coequation2 and uses

this concrete description to establish unique solvability of coalgebras satisfying the

coequation. Even an example of an existing completeness proof that can be shortened

with the use of coequations would be encouraging here. This leads us to the following

question: Are there examples of completeness proofs that could be made easier by

directly approaching them with coequations?

2See [DS21] for examples of such descriptions.

244 Chapter 5. Conclusions and Future Work

5.1.2 Guarded Kleene Algebra with Tests

In Chapter 3, we showed that GKAT and bisimulation GKAT extended with the

uniqueness axiom are complete for their respective semantics.

Direction 3: Adapting the completeness proof of GKAT with UA

The proof that GKAT with the uniqueness axiom is complete consists of a reduction

to bisimulation GKAT, which is a key example of a coalgebraic completeness theorem.

However, the completeness proof in Section 3.1 was not in the style suggested by

the local or global approaches3 of Chapter 2. Instead, it was in the style of Salomaa:

pushing solutions forward along projections from a bisimulation rather than pulling

them back from a cospan of homomorphisms. Interestingly, our characterization

of completeness theorems (Lemma 2.5.3) tells us that a local/global approach is

possible, but constructing such a proof by hand appears to be difficult.

By the uniqueness axiom, if a GKAT automaton admits a solution, then it is

unique. This leaves the following question: How do we show that nested GKAT

automata (automata that behave like GKAT expressions) admit solutions? Direction 2

is relevant here: It could be much easier to show that a smaller covariety of GKAT

automata admit solutions instead. Nested GKAT automata are presented by the

nesting coequation (Definition 3.1.31), so finding a smaller covariety amounts to

refining the nesting coequation with additional colours.

Direction 4: Completeness of GKAT without UA

In Chapter 3, we proved that the axioms of GKAT are complete for the fragment

consisting of propositional while programs that do not contain the skip command,

i.e., skip-free GKAT. Without the uniqueness axiom, the completeness problem

for full GKAT remains open, but our completeness results for skip-free GKAT are

encouraging. The fact that we could reuse results by Grabmayer and Fokkink [GF20]

has led us to consider the possibility of a full reduction from bisimulation GKAT

(without the uniqueness axiom) to Grabmayer’s completeness theorem for regular

expressions modulo bisimilarity. Unfortunately, it is not clear what the reduction

3This is also the case for the completeness theorem for star fragments in Section 4.5.1 of Chapter 4,
which also uses a uniqueness axiom. The key point is that the uniqueness axiom, a one-to-one corre-
spondence between solutions and coalgebra homomorphisms, and the characterization of bisimilarity
in terms of spans in Lemma 2.2.12 together imply that bisimilar systems admit equivalent solutions.

5.1. Future Work 245

strategy should be: GKAT automata admit many exits (one for each atomic test),

whereas regular expressions admit only one exit (successful termination). This is

reflected at the level of the syntax, for example in the GKAT program pb where

0 <BA b <BA 1, and this causes difficulties when trying to define a translation from

GKAT to regular expressions modulo bisimilarity. In other words, it is not clear how

the Boolean tests should be encoded as regular expressions. This is a concrete barrier

to naively defining a reduction like we were able to do in the skip-free case. In

skip-free GKAT programs, exits occur either for all atomic tests or none, which can

be encoded as 1 and 0 respectively.

This concrete barrier to naively translating the syntax of GKAT into regular

expressions motivates us to ask whether a reduction is possible in the first place:

Can the completeness of bisimulation GKAT be reduced to the completeness of

Milner’s axiomatization of regular expressions modulo bisimilarity? A step in the

right direction might be to pull the class of well-layered precharts back along the

natural inclusion of skip-free automata into the category of precharts and analyze the

relationship between the well-layeredness conditions and the solvability of skip-free

automata. I imagine this would reveal a connection between well-layered skip-

free automata and the structures of equivalence proofs in GKAT, analogous to the

coinductive formulation of Milner’s axioms given by Grabmayer [Gra21].

Direction 5: Bisimilarity with hypotheses

In [KS96], Kozen establishes the completeness of KAT by observing that KAT is KA

with additional axioms called hypotheses [Coh94]. In the case of KAT, the additional

axioms express that a subset of the alphabet generates a Boolean algebra. I would

be interested in seeing if an axiomatization of KAT programs modulo bisimilarity—

call it bisimulation KAT—could be obtained by adding similar axioms to Milner’s

axiomatization of regular expressions modulo bisimilarity. One desirable outcome of

such an approach would be a reduction of bisimulation GKAT to bisimulation KAT

in the same spirit as the reduction of skip-free GKAT to one-free regular expressions.

I would generally be interested in seeing an example of hypotheses being used

to axiomatize bisimilarity. Substantial effort has gone into developing general tech-

niques for adding hypotheses to Kleene algebra and KAT [KM14; Dou+19; Kap+20;

PRW21], axiomatizations of language equivalence, but no such theory has been

246 Chapter 5. Conclusions and Future Work

developed for axiomatizations of bisimilarity.

5.1.3 Effectful Process Algebras

In Chapter 4, I introduced a family of process types with branching structures

determined by an algebraic theory. I provided each process type with a fully expressive

specification language and paired it with a sound and complete axiomatization of

behavioural equivalence. I furthermore exhibited bisimulation GKAT and regular

expressions modulo bisimilarity as fragments of these expressive calculi, called star

fragments. There are numerous directions for research regarding effectful process

calculi and their star fragments.

Direction 6: Structural operational semantics

I would like to know whether our operational semantics for effectful process algebras

is an instance of the mathematical operational semantics introduced by Turi and

Plotkin [TP97]. More specifically, I would like to see monad-over-functor distributive

laws Σ∗MBM ⇒ BMΣ∗M and Ω∗MLM ⇒ LMΩ∗M (where Ω is the star fragment algebraic

signature, see Footnote 12) that correspond to our operational semantics. In the

effectful process calculus case, it appears that involvement of variables poses a barrier

to finding such a distributive law. One way around this might be the use of nominal

sets (see for example [GP02]) in the representations of process terms and their

behaviours, but more investigation is needed. On the surface, the situation for star

expressions appears to be much simpler: It is easy to check, for example, that the

Brzozowski-like derivative that gives GKAT its operational semantics is given by a

distributive law, and similarly for regular expressions modulo bisimilarity (both are

obtained from a GSOS specification [BIM95; TP97]).

Direction 7: Capturing examples from the literature

Two particular examples of effectful process calculi explored in Chapter 4 closely

resemble process calculi from the literature. The effectful process calculus obtained

from the theory of convex algebra (Example 4.2.8) has a syntax and operational

semantics that closely resembles Stark and Smolka’s probabilistic process calcu-

lus [SS00]. I conjecture that the two are indeed equivalent, and intend to verify this

in future work. Similarly, the effectful process calculus obtained from the theory

of convex semilattices with top (Example 4.1.15) closely resembles the calculus of

5.1. Future Work 247

Mislove, Oaknine, and Worrell [MOW03]. Again, I conjecture they are equivalent.

Direction 8: Completeness theorems for other fragments

In Section 4.5, I introduce star fragments of expressive effectful process calculi.

Star fragments offer a uniform construction of bisimulation variants of Kleene-like

algebras for a variety of paradigms of computing. I leave as an open problem whether

completeness theorems can be established for star fragments and their one-free

fragments in Section 4.5.

Here, however, I would like to draw attention to the fact that star fragments are

a somewhat arbitrary construction. For example, instead of star fragments, we could

have considered the fragment of the effectful process calculus with a perpetual loop

operator (−)ω , whose translation into the expressive calculus is defined

tr(1) = u tr(c) = c tr(e+σ f) = σ(tr(e), tr(f))

tr(e f) = tr(e)[tr(f)/u] tr(eω) = µu tr(e)

A sound axiomatization of this fragment can be obtained from the properties of

substitution and a restriction of Milner’s axioms, as follows:

EQ ⊢ e = f

e = f
1e = e1 = e ce = c e(f g) = (e f)g (e+σ f)g = eg+σ f g

eω f = eeω
(∀i≤ n) gi is guarded

p(1, g⃗)ω = (fp u p(u, g⃗p(1, g⃗)))ω

g = eg e is guarded

g = eω

Instantiated with semilattices, this is precisely Fokkink’s terminal cycle fragment of

regular expressions modulo bisimulation [Fok97]. In op. cit., Fokkink shows that an

axiomatization equivalent to the one given above is complete for bisimilarity.

The purpose of exhibiting the perpetual loop fragment above is just to illustrate

that fragments other than just the star fragment are of interest, and each fragment can

be systematically axiomatized via a restriction of the axiomatization of the expressive

calculus. I would specifically like to address coalgebraic unital fragments, which are

formally captured as follows.

Let (S,EQ, fp) be a branching theory presenting (M,η ,µ) and consider the BM-

248 Chapter 5. Conclusions and Future Work

coalgebra (Exp,ε) of effectful process expressions given by (S,EQ, fp). A unital

fixed-point structure on Exp is an algebraic signature {Fn}n∈N paired with functions

recn : Fn×Expn→ Exp that do not increase the set of free variables. That is, if V is the

set of free variables that appear in e1, . . . ,en, then V contains the set of free variables

in recn(τ,e1, . . . ,en). The functions recn should be thought of as assigning to each

τ ∈ Fn a format for a recursive operation (like the Kleene star, or a while loop).

Fix two distinguished variables u,v ∈ Var called the unit and dummy variable.

The unital fragment of (Exp,ε) corresponding to a unital fixed-point structure is the

set of expressions Exprec given by

Exprec ∋ e1,e2,ei ::= u | σ(e1, . . . ,en) | e1e2 | τ(e1, . . . ,en)

where σ ∈ Sn and τ ∈ Fn. The fragment-to-process term interpretation ftp is given by

ftp(u) = u

ftp(σ(e1, . . . ,en)) = σ(ftp(e1), . . . , ftp(en))

ftp(e1e2) = ftp(e1)[ftp(e2)/u]

ftp(τ(e1, . . . ,en)) = µv recn(τ, ftp(e1)[v/u], . . . , ftp(en)[v/u])

We say that Exprec is a coalgebraic unital fragment if it is a subcoalgebra of (Exp,ε).

For example, star fragments are obtained by setting F1 = {(−)(σ) | σ ∈ S2} and

rec1((−)(σ),e1) = σ(e1,u). The full calculus is given by setting Fn to be the set of all

process expressions with n free variables (in which neither u nor v appear bound)

and recn to be substitution. The base calculus, appearing at the bottom of Figure 5.1,

is obtained by setting Fn = /0 for all n ∈ N.

Coalgebraic unital fragments can be arranged in a diagram like Figure 5.1, with

the expressive calculus at the top and the base fragment (Fn = /0 for all n) at the bottom.

In Figure 5.1, fragments are ordered by behavioural expressiveness: A fragment Exp1

is below another fragment Exp2 if we have the inclusion !ε(Exp1)⊆ !ε(Exp2), where

!ε is the final coalgebra map (Exp,ε)→ (Z,ζ). I have only written the names of five

calculi in that diagram, but there are in principle many others—in-between the ones

I have explicitly written, or incomparable.

The main question I have about these fragments is their behavioural expres-

5.1. Future Work 249

Effectful Process Calculus

Star Fragment

Perpetual
Loop Fragment

One-free
Star Fragment

Base Calculus

Figure 5.1: Fragments of the expressive effectful process calculus.

siveness: Which behavioural coequations are the sets of behaviours specified by

coalgebraic unital fragments? In particular, I would like to see a behavioural covari-

ety that is not the set of behaviours of a coalgebraic unital fragment.

Direction 9: Higher arity actions

One way to interpret action symbols in our process calculi is as basic program tasks.

Single arity action symbols are useful for modelling processes where basic program

tasks are executed sequentially, one after the other. To model program tasks that

are more complex, perhaps due to splitting into subroutines, we need to allow

action symbols to have multiple arguments. Consider, for example, the process

start_baking(add_ingredients v1,mix v2,bake v3). The action symbol start_baking rep-

resents a task with three steps, the order of which matters modulo bisimilarity. The

(output) variable vi should be seen as an indication that “step i” has been completed.

If we replace Act× Id in our signatures ΣM, BM, and LM with an arbitrary polyno-

mial functor, allowing action symbols to have higher arity than one, do we obtain

semantics, axiomatizations, and completeness theorems like in the effectful process

algebra case? I conjecture that the answer is yes, at least for effectful process cal-

culi. There are essentially two reasons behind this conjecture: Firstly, the relevant

notion of guardedness is easily reformulated to fit the multiple arity case, and so is

the axiomatization of bisimilarity in Section 4.4. Secondly, and more importantly,

the completeness proof for effectful process calculi (essentially a generalization of

Milner’s completeness proof for the algebra of regular behaviours [Mil84]) does not

depend on the singular arity of action symbols.

250 Chapter 5. Conclusions and Future Work

Direction 10: Axiomatizing Other Equivalences and Relations

For the most part, the thesis focuses on axiomatizations of bisimilarity. Bisimilarity is

only one of many relations between programs one might want to reason about. For

example, van Glabbeek’s linear time–branching time spectrum from process algebra

illustrates an intricate lattice of equivalences that lie in-between trace and bisimi-

larity, ordered by inclusion [Gla90; Gla93] (some of which have been formulated

coalgebraically [Mon08; Cal14] and with the use of graded monads [MPS15; DMS19;

FMS21; For+22]). A different kind of relation one might want to reason about is

similarity [HJ04; Lev11], a sort of one-sided bisimilarity that in the regular language

case corresponds to inclusion. In certain cases, similarity can be axiomatized by

considering coalgebras in the category of partially ordered sets and monotone maps

(see [Sch22a] for the specific case where fp v p(v, x⃗) is computed as a least fixed-

point). A third kind of relation is behavioural distance, common in probabilistic

computation [Des99; BW05; BGP17]. I conjecture that an approach similar to the

one in this thesis can be taken to axiomatizing behavioural distances for program

branching characterized by a quantitative equational theory [MPP21]. Furthermore,

I expect that the axiomatization problems for similarity and behavioural distance can

be unified in the context of quantale-enriched algebraic theories [Pow99].

Direction 11: Impossibility Results and Other Kinds of Axiomatizations

Redko proved in [Red64] that there is no finite equational axiomatization of language

equivalence for regular expressions. Similar results exist in process algebra: For

example, Aceto, Fokkink, Ingólfsdóttir, and Luttik proved in [Ace+05] that CCS with

merge has no finite equational axiomatization, thereby confirming a conjecture made

by Bergstra and Klop [BK84]. In light of these negative results, I conjecture that finite

axiomatizations of bisimilarity only exist for trivial effectful process algebras, like the

Base Calculus in Figure 5.1.

Using the syntax of string diagrams instead of regular expressions, Piedeleu and

Zanasi give a finite axiomatization of language equivalence for finite state automata

in [PZ23] 4. A similar line of work treats Milner’s merge operation from CCS [Mil80]

(as well as Hoare’s merge operation [Hoa78]) string-diagrammatically [Bon+19]. I

4Intuitively, the source of Redko’s negative result is the Kleene star, which is a necessary ingredient
in Kleene’s theorem. For contrast, the Kleene star is a derived concept in Piedeleu and Zanasi’s calculus,
whose syntax is much closer to the automata-theoretic semantics of regular expressions.

5.1. Future Work 251

conjecture that a diagrammatic approach to effectful process algebra exists, given

that string diagrams have been used as a graphical syntax for traced monoidal cate-

gories [JSV96], which are categorical models of recursion (see for example [Has97])

that are deeply connected to iteration theories [SP00; BH03] (see the text under

Iteration Theories and Elgot Monads in Section 4.6).

Bibliography

[Ace+05] Luca Aceto, Wan J. Fokkink, Anna Ingólfsdóttir, and Bas Luttik. “CCS

with Hennessy’s merge has no finite-equational axiomatization”. In:

Theor. Comput. Sci. 330.3 (2005), pp. 377–405 (cit. on p. 250).

[Ace+11a] Luca Aceto, Georgiana Caltais, Eugen-Ioan Goriac, and Anna Ingólfs-

dóttir. “Axiomatizing GSOS with Predicates”. In: SOS. 2011, pp. 1–15

(cit. on p. 166).

[Ace+11b] Luca Aceto, Georgiana Caltais, Eugen-Ioan Goriac, and Anna Ingólfs-

dóttir. “PREG Axiomatizer - A Ground Bisimilarity Checker for GSOS

with Predicates”. In: CALCO. 2011, pp. 378–385 (cit. on p. 166).

[Ace94] Luca Aceto. “Deriving Complete Inference Systems for a Class of

GSOS Languages Generation Regular Behaviours”. In: CONCUR. 1994,

pp. 449–464 (cit. on p. 166).

[Acz+03] Peter Aczel, Jirí Adámek, Stefan Milius, and Jiri Velebil. “Infinite trees

and completely iterative theories: a coalgebraic view”. In: Theor. Comput.

Sci. 300.1-3 (2003), pp. 1–45 (cit. on p. 196).

[Adá03] Jǐrí Adámek. “On final coalgebras of continuous functors”. In: Theoret-

ical Computer Science 294.1 (2003). Category Theory and Computer

Science, pp. 3–29. ISSN: 0304-3975 (cit. on p. 198).

[Adá05] Jǐrí Adámek. “Introduction to Coalgebra”. In: Theory and Applications

of Categories [electronic only] 14 (2005), pp. 157–199 (cit. on pp. 27,

45, 47, 188).

[AMV11] Jǐrí Adámek, Stefan Milius, and Jǐrí Velebil. “Elgot theories: a new

perspective on the equational properties of iteration”. In: Math. Struct.

Comput. Sci. 21.2 (2011), pp. 417–480 (cit. on pp. 27, 239).

254 BIBLIOGRAPHY

[AN80] André Arnold and Maurice Nivat. “The metric space of infinite trees. Al-

gebraic and topological properties”. In: Fundam. Informaticae 3 (1980),

pp. 445–476 (cit. on p. 198).

[And+14] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin,

Dexter Kozen, Cole Schlesinger, and David Walker. “NetKAT: semantic

foundations for networks”. In: POPL. 2014, pp. 113–126 (cit. on pp. 8,

20, 75, 167, 168).

[And99] Suzana Andova. “Process Algebra with Probabilistic Choice”. In: ARTS.

Vol. 1601. Lecture Notes in Computer Science. Springer, 1999, pp. 111–

129 (cit. on pp. 8, 169, 171).

[Ant96] Valentin M. Antimirov. “Partial Derivatives of Regular Expressions and

Finite Automaton Constructions”. In: Theoretical Computer Science 155.2

(1996), pp. 291–319 (cit. on pp. 38, 59).

[AR94] Jǐrí Adámek and Jǐrí Rosický. Locally Presentable and Accessible Cate-

gories. London Mathematical Society Lecture Note Series. Cambridge

University Press, 1994 (cit. on pp. 67, 188).

[Bae05] Jos C. M. Baeten. “A brief history of process algebra”. In: Theoretical

Computer Science 335.2-3 (2005), pp. 131–146 (cit. on p. 169).

[Ban22] Stefan Banach. “Sur les opérations dans les ensembles abstraits et leur

application aux équations intégrales”. In: Fundamenta Mathematicae 3

(1922), pp. 133–181 (cit. on p. 200).

[Bar93] Michael Barr. “Terminal Coalgebras in Well-Founded Set Theory”. In:

Theoretical Computer Science 114.2 (1993), pp. 299–315 (cit. on pp. 189,

198).

[BBK87] Jos C. M. Baeten, Jan A. Bergstra, and Jan Willem Klop. “On the Con-

sistency of Koomen’s Fair Abstraction Rule”. In: Theoretical Computer

Science 51 (1987), pp. 129–176 (cit. on pp. 76, 224).

[BBR09] Jos C. M. Baeten, Twan Basten, and Michel A. Reniers. Process Algebra:

Equational Theories of Communicating Processes. Cambridge Tracts in

Theoretical Computer Science. Cambridge University Press, 2009 (cit.

on p. 169).

BIBLIOGRAPHY 255

[BCG06] Jos C. M. Baeten, Flavio Corradini, and Clemens Grabmayer. “On the

Star Height of Regular Expressions Under Bisimulation (Extended Ab-

stract)”. In: EXPRESS. Bonn, Germany, 2006 (cit. on pp. 22, 171, 239).

[BCG07] Jos C. M. Baeten, Flavio Corradini, and Clemens Grabmayer. “A charac-

terization of regular expressions under bisimulation”. In: J. ACM 54.2

(2007), p. 6 (cit. on pp. 22, 27, 31, 40, 240).

[BE76] Stephen L. Bloom and Calvin C. Elgot. “The Existence and Construc-

tion of Free Iterative Theories”. In: J. Comput. Syst. Sci. 12.3 (1976),

pp. 305–318 (cit. on pp. 27, 230, 239).

[BÉ88] Stephen L. Bloom and Zoltán Ésik. “Varieties of Iteration Theories”. In:

SIAM J. Comput. 17.5 (1988), pp. 939–966 (cit. on pp. 27, 179, 239).

[BÉ93] Stephen L. Bloom and Zoltán Ésik. Iteration Theories - The Equational

Logic of Iterative Processes. EATCS Monographs on Theoretical Computer

Science. Springer, 1993 (cit. on p. 165).

[Bec69] Jon Beck. “Distributive laws”. In: Seminar on triples and categorical

homology theory. Springer. 1969, pp. 119–140 (cit. on p. 175).

[Bek84] Hans Bekić. “Definable operations in general algebras, and the theory

of automata and flowcharts”. In: Programming Languages and Their

Definition: H. Bekǐc (1936–1982). Ed. by C. B. Jones. Berlin, Heidelberg:

Springer Berlin Heidelberg, 1984, pp. 30–55 (cit. on p. 240).

[Ben77] Johann van Benthem. “Modal Correspondence Theory”. PhD thesis.

University of Amsterdam, 1977 (cit. on p. 22).

[BGP17] Borja Balle, Pascale Gourdeau, and Prakash Panangaden. “Bisimulation

Metrics for Weighted Automata”. In: ICALP. Vol. 80. LIPIcs. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2017, 103:1–103:14 (cit. on

p. 250).

[BH03] Nick Benton and Martin Hyland. “Traced Premonoidal Categories”. In:

RAIRO - Theoretical Informatics and Applications 37.4 (2003), pp. 273–

299 (cit. on p. 251).

[BIM95] Bard Bloom, Sorin Istrail, and Albert R. Meyer. “Bisimulation Can’t be

Traced”. In: J. ACM 42.1 (1995), pp. 232–268 (cit. on p. 246).

256 BIBLIOGRAPHY

[Bir35] Garrett Birkhoff. “On the Structure of Abstract Algebras”. In: Mathe-

matical Proceedings of the Cambridge Philosophical Society 31.4 (1935),

pp. 433–454 (cit. on pp. 175, 243).

[BK82] Jan A. Bergstra and Jan Willem Klop. “Fixed point semantics in process

algebras (preprint)”. Jan. 1982 (cit. on p. 22).

[BK84] J.A. Bergstra and J.W. Klop. “Process algebra for synchronous commu-

nication”. In: Information and Control 60.1 (1984), pp. 109–137. ISSN:

0019-9958 (cit. on p. 250).

[BK88] Jan A. Bergstra and Jan Willem Klop. “Process theory based on bisimula-

tion semantics”. In: REX Workshop. Vol. 354. Lecture Notes in Computer

Science. Springer, 1988, pp. 50–122 (cit. on p. 171).

[BM96] Jon Barwise and Lawrence S. Moss. Vicious circles - on the mathematics

of non-wellfounded phenomena. Vol. 60. CSLI lecture notes series. CSLI,

1996 (cit. on p. 230).

[BMS13] Marcello M. Bonsangue, Stefan Milius, and Alexandra Silva. “Sound

and Complete Axiomatizations of Coalgebraic Language Equivalence”.

In: ACM Trans. Comput. Logic 14.1 (Feb. 2013) (cit. on pp. 27, 33, 34,

66, 67, 72, 239).

[Bon+12] Filippo Bonchi, Marcello Bonsangue, Michele Boreale, Jan Rutten, and

Alexandra Silva. “A coalgebraic perspective on linear weighted au-

tomata”. In: Information and Computation 211 (2012), pp. 77–105

(cit. on p. 45).

[Bon+19] Filippo Bonchi, Robin Piedeleu, Pawel Sobocinski, and Fabio Zanasi.

“Bialgebraic Semantics for String Diagrams”. In: CONCUR. Vol. 140.

LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 37:1–

37:17 (cit. on p. 250).

[BP13] Filippo Bonchi and Damien Pous. “Checking NFA equivalence with

bisimulations up to congruence”. In: POPL. ACM, 2013, pp. 457–468

(cit. on p. 22).

[Brz64] Janusz A. Brzozowski. “Derivatives of Regular Expressions”. In: J. ACM

11.4 (1964), pp. 481–494 (cit. on pp. 52, 87, 88, 114, 184).

BIBLIOGRAPHY 257

[BSS17] Filippo Bonchi, Alexandra Silva, and Ana Sokolova. “The Power of

Convex Algebras”. In: CONCUR. Vol. 85. LIPIcs. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2017, 23:1–23:18 (cit. on p. 181).

[BSV19] Filippo Bonchi, Ana Sokolova, and Valeria Vignudelli. “The Theory of

Traces for Systems with Nondeterminism and Probability”. In: LICS.

IEEE, 2019, pp. 1–14 (cit. on pp. 169, 175, 183).

[BSV21] Filippo Bonchi, Ana Sokolova, and Valeria Vignudelli. “Presenting Con-

vex Sets of Probability Distributions by Convex Semilattices and Unique

Bases ((Co)algebraic pearls)”. In: CALCO. Vol. 211. LIPIcs. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 11:1–11:18 (cit. on

pp. 169, 175, 179, 181).

[BT83] Stephen L. Bloom and Ralph Tindell. “Varieties of ‘if-then-else’”. In:

SIAM J. Comput. 12.4 (1983), pp. 677–707 (cit. on pp. 170, 179).

[BW05] Franck van Breugel and James Worrell. “A behavioural pseudometric for

probabilistic transition systems”. In: Theor. Comput. Sci. 331.1 (2005),

pp. 115–142 (cit. on p. 250).

[BW81] Manfred Broy and Martin Wirsing. “On the Algebraic Specification

of Nondeterministic Programming Languages”. In: CAAP. Vol. 112.

Lecture Notes in Computer Science. Springer, 1981, pp. 162–179 (cit.

on p. 173).

[BW90] Jos C. M. Baeten and W. P. Weijland. Process algebra. Vol. 18. Cambridge

tracts in theoretical computer science. Cambridge University Press, 1990

(cit. on pp. 22, 165, 169).

[Cal14] Georgiana Caltais. “Coalgebraic Tools for Bisimilarity and Decorated

Trace Semantics”. Reykjavík University, 2014 (cit. on p. 250).

[Cha+19] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zel-

dovich. “Argosy: verifying layered storage systems with recovery refine-

ment”. In: PLDI. 2019, pp. 1054–1068 (cit. on p. 75).

[Cîr17] Corina Cîrstea. “From Branching to Linear Time, Coalgebraically”. In:

Fundam. Informaticae 150.3-4 (2017), pp. 379–406 (cit. on pp. 169,

238).

258 BIBLIOGRAPHY

[CKS96] Ernie Cohen, Dexter Kozen, and Frederick Smith. The complexity of

Kleene algebra with tests. Tech. rep. Cornell University, Ithaca, USA,

1996 (cit. on p. 21).

[Coh09] Ernie Cohen. Weak Kleene Algebra is Sound and (Possibly) Complete for

Simulation. 2009 (cit. on p. 166).

[Coh94] Ernie Cohen. Hypotheses in Kleene Algebra. Tech. rep. Bellcore, 1994

(cit. on pp. 167, 245).

[Con71] John Horton Conway. Regular Algebra and Finite Machines. Chapman

and Hall, London, UK, 1971 (cit. on pp. 20, 34, 66).

[Cou83] Bruno Courcelle. “Fundamental Properties of Infinite Trees”. In: Theor.

Comput. Sci. 25 (1983), pp. 95–169 (cit. on p. 196).

[Des99] Josée Desharnais. “Logical characterization of simulation for labelled

Markov chains”. In: Proceedings of PROBMIV’99 (1999) (cit. on p. 250).

[DMS19] Ulrich Dorsch, Stefan Milius, and Lutz Schröder. “Graded Monads

and Graded Logics for the Linear Time - Branching Time Spectrum”.

In: CONCUR. Vol. 140. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2019, 36:1–36:16 (cit. on p. 250).

[Dou+19] Amina Doumane, Denis Kuperberg, Damien Pous, and Pierre Pradic.

“Kleene Algebra with Hypotheses”. In: FOSSACS. 2019, pp. 207–223

(cit. on pp. 167, 245).

[DS21] Fredrik Dahlqvist and Todd Schmid. “How to Write a Coequation

((Co)algebraic pearls)”. In: CALCO. Vol. 211. LIPIcs. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2021, 13:1–13:25 (cit. on p. 243).

[Elg75] Calvin C. Elgot. “Monadic Computation And Iterative Algebraic The-

ories”. In: Logic Colloquium ’73. Ed. by Harvey E. Rose and John C.

Shepherdson. Vol. 80. Studies in Logic and the Foundations of Mathe-

matics. Elsevier, 1975, pp. 175–230 (cit. on pp. 27, 239).

[FMS21] Chase Ford, Stefan Milius, and Lutz Schröder. “Behavioural Preorders

via Graded Monads”. In: 36th Annual ACM/IEEE Symposium on Logic in

Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. IEEE,

2021, pp. 1–13 (cit. on p. 250).

BIBLIOGRAPHY 259

[Fok97] Wan J. Fokkink. “Axiomatizations for the Perpetual Loop in Process

Algebra”. In: ICALP. Vol. 1256. Lecture Notes in Computer Science.

Springer, 1997, pp. 571–581 (cit. on pp. 22, 171, 239, 247).

[For+22] Chase Ford, Stefan Milius, Lutz Schröder, Harsh Beohar, and Barbara

König. “Graded Monads and Behavioural Equivalence Games”. In: LICS.

ACM, 2022, 61:1–61:13 (cit. on p. 250).

[Fos+15] Nate Foster, Dexter Kozen, Mae Milano, Alexandra Silva, and Laure

Thompson. “A Coalgebraic Decision Procedure for NetKAT”. In: POPL.

ACM, 2015, pp. 343–355 (cit. on pp. 8, 75, 165).

[Fos+16] Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt, and

Alexandra Silva. “Probabilistic NetKAT”. In: ESOP. Vol. 9632. Lecture

Notes in Computer Science. Springer, 2016, pp. 282–309 (cit. on pp. 8,

75, 168).

[FS15] Simon Forster and Georg Struth. “On the Fine-Structure of Regular

Algebra”. In: Journal of Automatic Reasoning 54 (2015), pp. 165–197

(cit. on p. 20).

[FZ94] Wan J. Fokkink and Hans Zantema. “Basic Process Algebra with Iter-

ation: Completeness of its Equational Axioms”. In: Comput. J. 37.4

(1994), pp. 259–268 (cit. on pp. 22, 171, 239).

[FZ97] Wan J. Fokkink and Hans Zantema. “Termination Modulo Equations by

Abstract Commutation with an Application to Iteration”. In: Theoretical

Computer Science 177.2 (1997), pp. 407–423 (cit. on pp. 171, 239).

[GF20] Clemens Grabmayer and Wan J. Fokkink. “A Complete Proof System for

1-Free Regular Expressions Modulo Bisimilarity”. In: LICS. ACM, 2020,

pp. 465–478 (cit. on pp. 22, 28, 31–34, 39, 42, 49, 50, 53, 55, 56, 58,

59, 61–64, 66, 72, 77, 78, 135, 166, 167, 171, 239–241, 244).

[Gla90] Rob J. van Glabbeek. “The Linear Time-Branching Time Spectrum

(Extended Abstract)”. In: CONCUR. Vol. 458. Lecture Notes in Computer

Science. Springer, 1990, pp. 278–297 (cit. on p. 250).

260 BIBLIOGRAPHY

[Gla93] Rob J. van Glabbeek. “The Linear Time - Branching Time Spectrum II”.

In: CONCUR ’93, 4th International Conference on Concurrency Theory,

Hildesheim, Germany, August 23-26, 1993, Proceedings. Vol. 715. Lecture

Notes in Computer Science. Springer, 1993, pp. 66–81 (cit. on p. 250).

[Gog+77] Joseph A. Goguen, James W. Thatcher, Eric G. Wagner, and Jesse B.

Wright. “Initial Algebra Semantics and Continuous Algebras”. In: J.

ACM 24.1 (1977), pp. 68–95 (cit. on p. 191).

[GP02] Murdoch Gabbay and Andrew M. Pitts. “A New Approach to Abstract

Syntax with Variable Binding”. In: Formal Aspects Comput. 13.3-5

(2002), pp. 341–363 (cit. on p. 246).

[Gra05] Clemens Grabmayer. “Using Proofs by Coinduction to Find ‘Traditional’

Proofs”. In: CALCO. Vol. 3629. Lecture Notes in Computer Science.

Springer, 2005, pp. 175–193 (cit. on p. 22).

[Gra21] Clemens Grabmayer. “A Coinductive Version of Milner’s Proof System

for Regular Expressions Modulo Bisimilarity”. In: CALCO. Vol. 211.

LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 16:1–

16:23 (cit. on pp. 22, 39, 171, 245).

[Gra22] Clemens Armin Grabmayer. “Milner’s Proof System for Regular Expres-

sions Modulo Bisimilarity is Complete: Crystallization: Near-Collapsing

Process Graph Interpretations of Regular Expressions”. In: LICS. ACM,

2022, 34:1–34:13 (cit. on pp. 22, 23, 26, 31, 33, 39, 166–168, 171,

230, 239, 240, 242).

[GS01] H. Peter Gumm and Tobias Schröder. “Covarieties and complete cova-

rieties”. In: Theoretical Computer Science 260.1-2 (2001), pp. 71–86

(cit. on p. 243).

[Gum98] H. Peter Gumm. “Functors for Coalgebras”. In: Algebra Universalis 45

(Nov. 1998) (cit. on pp. 48, 89).

[Gum99] H. Peter Gumm. “Elements of the general theory of coalgebras”. In:

LUATCS’99, Rand Afrikaans University, Johannesburg (1999) (cit. on

pp. 27, 45, 47, 69, 218).

BIBLIOGRAPHY 261

[Has97] Masahito Hasegawa. “Models of sharing graphs: a categorical semantics

of let and letrec”. PhD thesis. University of Edinburgh, UK, 1997 (cit. on

p. 251).

[HJ04] Jesse Hughes and Bart Jacobs. “Simulations in coalgebra”. In: Theoreti-

cal Computer Science 327.1-2 (2004), pp. 71–108 (cit. on p. 250).

[HK73] John E. Hopcroft and Richard M. Karp. “An n5/2 Algorithm for Maxi-

mum Matchings in Bipartite Graphs”. In: SIAM J. Comput. 2.4 (1973),

pp. 225–231 (cit. on p. 21).

[HM12] Peter Höfner and Bernhard Möller. “Dijkstra, Floyd and Warshall meet

Kleene”. In: Formal Aspects Comput. 24.4-6 (2012), pp. 459–476 (cit. on

p. 20).

[Hoa+87] Charles A. R. Hoare, Ian J. Hayes, Jifeng He, Carroll Morgan, A. W.

Roscoe, Jeff W. Sanders, Ib Holm Sorensen, J. Michael Spivey, and

Bernard Sufrin. “Laws of Programming”. In: Commun. ACM 30.8 (1987),

pp. 672–686 (cit. on p. 19).

[Hoa78] Charles A. R. Hoare. “Communicating Sequential Processes”. In: Com-

mun. ACM 21.8 (1978), pp. 666–677 (cit. on p. 250).

[Hoa80] Charles A. R. Hoare. “A Model for Communicating Sequential Pro-

cesses”. In: On the Construction of Programs. Ed. by R. M. McKeag and

A. M. Macnaghten. Cambridge University Press, 1980, pp. 229–254

(cit. on p. 22).

[HS96] Hans Huttel and Shukla Scott. On the Complexity of Deciding Behavioural

Equivalences and Preorders. Tech. rep. USA, 1996 (cit. on p. 22).

[Hun04] Edward V. Huntington. “Sets of independent postulates for the algebra

of logic”. In: Transactions of the American Mathematical Society 5.3

(1904), pp. 288–309 (cit. on p. 93).

[Jac06] Bart Jacobs. “A Bialgebraic Review of Deterministic Automata, Regular

Expressions and Languages”. In: Essays Dedicated to Joseph A. Goguen.

Vol. 4060. Lecture Notes in Computer Science. Springer, 2006, pp. 375–

404 (cit. on pp. 28, 32–34, 66, 67, 72).

262 BIBLIOGRAPHY

[Jac10] Bart Jacobs. “Convexity, Duality and Effects”. In: IFIP TCS. Vol. 323. IFIP

Advances in Information and Communication Technology. Springer,

2010, pp. 1–19 (cit. on p. 169).

[Jac16] Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States

and Observation. Vol. 59. Cambridge Tracts in Theoretical Computer

Science. Cambridge University Press, 2016 (cit. on pp. 23, 27, 33, 45,

47).

[Joh82] Peter T. Johnstone. Stone spaces. Cambridge Studies in Advanced Mathe-

matics 3. Cambridge: Cambridge University Press, 1982 (cit. on p. 175).

[JSV96] André Joyal, Ross Street, and Dominic Verity. “Traced monoidal cat-

egories”. In: Mathematical Proceedings of the Cambridge Philosophical

Society 119.3 (1996), pp. 447–468 (cit. on p. 251).

[Kap+18] Tobias Kappé, Paul Brunet, Alexandra Silva, and Fabio Zanasi. “Con-

current Kleene Algebra: Free Model and Completeness”. In: ESOP.

Vol. 10801. Lecture Notes in Computer Science. Springer, 2018,

pp. 856–882 (cit. on pp. 20, 167).

[Kap+19] Tobias Kappé, Paul Brunet, Jurriaan Rot, Alexandra Silva, Jana Wage-

maker, and Fabio Zanasi. “Kleene Algebra with Observations”. In: CON-

CUR. 2019, 41:1–41:16 (cit. on pp. 165, 167).

[Kap+20] Tobias Kappé, Paul Brunet, Alexandra Silva, Jana Wagemaker, and

Fabio Zanasi. “Concurrent Kleene Algebra with Observations: From

Hypotheses to Completeness”. In: FOSSACS. 2020, pp. 381–400 (cit. on

pp. 165, 167, 245).

[KK05] Lucja Kot and Dexter Kozen. “Kleene Algebra and Bytecode Verification”.

In: Electron. Notes Theoretical Computer Science 141.1 (2005), pp. 221–

236 (cit. on p. 75).

[Kle56] Stephen Cole Kleene. “Representation of Events in Nerve Nets and

Finite Automata”. In: Automata Studies. Princeton University Press,

1956 (cit. on pp. 20, 31, 34, 35, 42, 55, 75, 113, 165).

[KM14] Dexter Kozen and Konstantinos Mamouras. “Kleene Algebra with Equa-

tions”. In: ICALP. 2014, pp. 280–292 (cit. on pp. 167, 245).

BIBLIOGRAPHY 263

[Koc70] Anders Kock. “Monads on symmetric monoidal closed categories”. In:

Archiv der Mathematik 21 (1 1970), pp. 1–10 (cit. on p. 238).

[Koz91] Dexter Kozen. “A Completeness Theorem for Kleene Algebras and the

Algebra of Regular Events”. In: LICS. IEEE Computer Society, 1991,

pp. 214–225 (cit. on pp. 20, 33, 55, 66, 76, 165).

[Koz96] Dexter Kozen. “Kleene Algebra with Tests and Commutativity Condi-

tions”. In: TACAS. 1996, pp. 14–33 (cit. on pp. 20, 21).

[KP00] Dexter Kozen and Maria-Christina Patron. “Certification of Compiler

Optimizations Using Kleene Algebra with Tests”. In: CL. 2000, pp. 568–

582 (cit. on pp. 20, 75).

[Kro90] Daniel Krob. “A Complete System of B-Rational Identities”. In: ICALP.

Vol. 443. Lecture Notes in Computer Science. Springer, 1990, pp. 60–73

(cit. on p. 20).

[KS96] Dexter Kozen and Frederick Smith. “Kleene Algebra with Tests: Com-

pleteness and Decidability”. In: CSL. Vol. 1258. Lecture Notes in Com-

puter Science. Springer, 1996, pp. 244–259 (cit. on pp. 20, 21, 75, 165,

166, 245).

[KSS23] Tobias Kappé, Todd Schmid, and Alexandra Silva. “A Complete In-

ference System for Skip-free Guarded Kleene Algebra with Tests”. In:

ESOP. Vol. 13990. Lecture Notes in Computer Science. Springer, 2023,

pp. 309–336 (cit. on pp. 27, 29, 76, 78, 225).

[KT08] Dexter Kozen and Wei-Lung Dustin Tseng. “The Böhm-Jacopini The-

orem Is False, Propositionally”. In: MPC. Vol. 5133. Lecture Notes in

Computer Science. Springer, 2008, pp. 177–192 (cit. on pp. 19, 21, 76,

84, 90, 165, 225).

[Lam68] Joachim Lambek. “A fixpoint theorem for complete categories”. In:

Mathematische Zeitschrift 103.2 (1968), pp. 151–161 (cit. on pp. 67,

190, 194).

[Law63] F William Lawvere. “Functorial semantics of algebraic theories”. In:

Proceedings of the National Academy of Sciences of the United States of

America 50.5 (1963), p. 869 (cit. on p. 169).

264 BIBLIOGRAPHY

[Lev11] Paul Blain Levy. “Similarity Quotients as Final Coalgebras”. In: FoSSaCS.

Vol. 6604. Lecture Notes in Computer Science. Springer, 2011, pp. 27–

41 (cit. on p. 250).

[LS17] Michael R Laurence and Georg Struth. Completeness Theorems for Pomset

Languages and Concurrent Kleene Algebras. 2017. arXiv: 1705.05896

[cs.FL] (cit. on p. 167).

[Mak87] Johann A. Makowsky. “Why Horn Formulas Matter in Computer Sci-

ence: Initial Structures and Generic Examples”. In: J. Comput. Syst. Sci.

34.2/3 (1987), pp. 266–292 (cit. on p. 165).

[Man76] Ernest G. Manes. Algebraic Theories. 1st ed. Graduate Texts in Mathe-

matics. Springer-Verlag New York, 1976 (cit. on pp. 169, 175).

[Man91] Ernest G. Manes. “Equations for if-then-else”. In: MFPS. Vol. 598. Lec-

ture Notes in Computer Science. Springer, 1991, pp. 446–456 (cit. on

pp. 25, 170, 179).

[McC61] John McCarthy. “A basis for a mathematical theory of computation,

preliminary report”. In: IRE-AIEE-ACM Computer Conference (Western).

ACM, 1961, pp. 225–238 (cit. on pp. 170, 179).

[Mil10] Stefan Milius. “A Sound and Complete Calculus for Finite Stream Cir-

cuits”. In: LICS. IEEE Computer Society, 2010, pp. 421–430 (cit. on

pp. 27, 33, 34, 45, 66, 67, 239).

[Mil80] Robin Milner. A Calculus of Communicating Systems. Vol. 92. Lecture

Notes in Computer Science. Springer, 1980 (cit. on pp. 22, 37, 169,

250).

[Mil84] Robin Milner. “A Complete Inference System for a Class of Regular

Behaviours”. In: J. Comput. Syst. Sci. 28.3 (1984), pp. 439–466 (cit. on

pp. 8, 19, 22, 24, 26, 27, 31, 39, 40, 42, 49, 165, 166, 169–171, 173,

176, 184, 221, 237, 238, 240, 242, 249).

[MN87] Alan H. Mekler and Evelyn M. Nelson. “Equational Bases for If-Then-

Else”. In: SIAM Journal on Computing 16.3 (1987), pp. 465–485 (cit. on

p. 179).

https://arxiv.org/abs/1705.05896
https://arxiv.org/abs/1705.05896

BIBLIOGRAPHY 265

[Mog89] Eugenio Moggi. “Computational Lambda-Calculus and Monads”. In:

Proceedings of the Fourth Annual Symposium on Logic in Computer

Science (LICS ’89), Pacific Grove, California, USA, June 5-8, 1989. IEEE

Computer Society, 1989, pp. 14–23 (cit. on p. 237).

[Mog91] Eugenio Moggi. “Notions of computation and monads”. In: Information

and Computation 93.1 (1991). Selections from 1989 IEEE Symposium

on Logic in Computer Science, pp. 55–92. ISSN: 0890-5401 (cit. on

pp. 25, 237).

[Mon08] Luís Monteiro. “A Coalgebraic Characterization of Behaviours in the

Linear Time - Branching Time Spectrum”. In: WADT. Vol. 5486. Lec-

ture Notes in Computer Science. Springer, 2008, pp. 251–265 (cit. on

p. 250).

[MOW03] Michael W. Mislove, Joël Ouaknine, and James Worrell. “Axioms for

Probability and Nondeterminism”. In: EXPRESS. Vol. 96. Electronic

Notes in Theoretical Computer Science. Elsevier, 2003, pp. 7–28 (cit.

on pp. 8, 183, 237, 247).

[MPP21] Radu Mardare, Prakash Panangaden, and Gordon Plotkin. “Fixed-Points

for Quantitative Equational Logics”. In: 2021 36th Annual ACM/IEEE

Symposium on Logic in Computer Science (LICS) (June 2021) (cit. on

p. 250).

[MPS15] Stefan Milius, Dirk Pattinson, and Lutz Schröder. “Generic Trace Seman-

tics and Graded Monads”. In: CALCO. Vol. 35. LIPIcs. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2015, pp. 253–269 (cit. on p. 250).

[Mye09] Robert S. R. Myers. “Coalgebraic Expressions”. In: FICS. Institute of

Cybernetics, 2009, pp. 61–69 (cit. on p. 239).

[Nel83] Evelyn Nelson. “Iterative Algebras”. In: Theoretical Computer Science 25

(1983), pp. 67–94 (cit. on pp. 27, 239, 240).

[Par81] David Michael Ritchie Park. “Concurrency and Automata on Infinite

Sequences”. In: Theoretical Computer Science. Vol. 104. Lecture Notes

in Computer Science. Springer, 1981, pp. 167–183 (cit. on p. 22).

266 BIBLIOGRAPHY

[Plo04] Gordon D. Plotkin. “A structural approach to operational semantics”. In:

J. Log. Algebraic Methods Program. 60-61 (2004), pp. 17–139 (cit. on

p. 170).

[Pow99] John Power. “Enriched Lawvere Theories”. In: Theory and Applications

of Categories 6.7 (1999), pp. 83–93 (cit. on p. 250).

[PP02] Gordon D. Plotkin and John Power. “Notions of Computation Determine

Monads”. In: FoSSaCS. Vol. 2303. Lecture Notes in Computer Science.

Springer, 2002, pp. 342–356 (cit. on pp. 25, 169, 237, 238, 241).

[PR95] D. Pumplün and Helmut Röhrl. “Convexity theories IV. Klein-Hilbert

parts in convex modules”. In: Appl. Categorical Struct. 3.2 (1995),

pp. 173–200 (cit. on p. 169).

[PRW21] Damien Pous, Jurriaan Rot, and Jana Wagemaker. “On Tools for Com-

pleteness of Kleene Algebra with Hypotheses”. In: RAMICS. 2021,

pp. 378–395 (cit. on pp. 167, 245).

[PW22] Damien Pous and Jana Wagemaker. “Completeness Theorems for Kleene

Algebra with Top”. In: CONCUR. 2022, 26:1–26:18 (cit. on p. 167).

[PZ23] Robin Piedeleu and Fabio Zanasi. “A Finite Axiomatisation of Finite-

State Automata Using String Diagrams”. In: Log. Methods Comput. Sci.

19.1 (2023) (cit. on p. 250).

[Red64] V. N. Redko. “On defining relations for the algebra of regular events”. In:

Ukrainskii Matematicheskii Zhurnal 16 (1 1964), pp. 120–126 (cit. on

pp. 20, 250).

[Ree02] J. Rees. Fizz Buzz: 101 Spoken Numeracy Games - Ideal for Mental Maths.

101 Spoken Numeracy Games - Ideal for Mental Maths. LDA, 2002

(cit. on p. 79).

[RHE22] Aloïs Rosset, Helle Hvid Hansen, and Jörg Endrullis. “Algebraic Presen-

tation of Semifree Monads”. In: CMCS. Vol. 13225. Lecture Notes in

Computer Science. Springer, 2022, pp. 110–132 (cit. on pp. 175, 176).

[Ros00] Brian J. Ross. “Probabilistic Pattern Matching and the Evolution of

Stochastic Regular Expressions”. In: Appl. Intell. 13.3 (2000), pp. 285–

300 (cit. on p. 20).

BIBLIOGRAPHY 267

[Róż+23] Wojciech Różowski, Tobias Kappé, Dexter Kozen, Todd Schmid, and

Alexandra Silva. Probabilistic Guarded KAT Modulo Bisimilarity: Com-

pleteness and Complexity. 2023. arXiv: 2305.01755 [cs.LO] (cit. on

pp. 8, 226, 227).

[Rut00] Jan J. M. M. Rutten. “Universal coalgebra: a theory of systems”. In:

Theoretical Computer Science 249.1 (2000), pp. 3–80 (cit. on pp. 23, 27,

33, 45, 47, 49, 60, 68, 69, 173, 188, 213, 216, 236, 242).

[Rut03] Jan J. M. M. Rutten. “Behavioural differential equations: a coinduc-

tive calculus of streams, automata, and power series”. In: Theoretical

Computer Science 308 (2003), pp. 1–53 (cit. on p. 53).

[Rut98] Jan J. M. M. Rutten. “Automata and Coinduction (An Exercise in Coal-

gebra)”. In: CONCUR. Vol. 1466. Lecture Notes in Computer Science.

Springer, 1998, pp. 194–218 (cit. on pp. 23, 101, 190).

[Sal66] Arto Salomaa. “Two Complete Axiom Systems for the Algebra of Regular

Events”. In: J. ACM 13.1 (1966), pp. 158–169 (cit. on pp. 20, 31, 32,

34, 35, 39, 55, 76, 98, 165, 171, 172, 218, 238, 241).

[SBR10] Alexandra Silva, Marcello M. Bonsangue, and Jan J. M. M. Rutten.

“Non-Deterministic Kleene Coalgebras”. In: Log. Methods Comput. Sci.

6.3 (2010) (cit. on pp. 66, 67).

[Sch+21] Todd Schmid, Tobias Kappé, Dexter Kozen, and Alexandra Silva.

“Guarded Kleene Algebra with Tests: Coequations, Coinduction, and

Completeness”. In: ICALP. Vol. 198. LIPIcs. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2021, 142:1–142:14 (cit. on pp. 8, 27, 28, 76,

78, 87, 93, 96, 112, 172, 225).

[Sch+22] Todd Schmid, Wojciech Rozowski, Jurriaan Rot, and Alexandra Silva.

“Processes Parametrised by an Algebraic Theory”. In: ICALP. Vol. 229.

LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 132:1–

132:20 (cit. on pp. 27, 29, 76, 165).

[Sch22a] Todd Schmid. “A (Co)Algebraic Framework for Ordered Processes”. In:

CoRR abs/2209.00634 (2022). arXiv: 2209.00634 (cit. on pp. 27, 29,

166, 250).

https://arxiv.org/abs/2305.01755
https://arxiv.org/abs/2209.00634

268 BIBLIOGRAPHY

[Sch22b] Todd Schmid. “Presenting with Quantitative Inequational Theories”. In:

CoRR abs/2207.11629 (2022). arXiv: 2207.11629 (cit. on p. 181).

[Sil10] Alexandra Silva. “Kleene coalgebra”. PhD thesis. Radboud University,

2010 (cit. on pp. 26, 28, 32–34, 52, 66, 67, 72, 239).

[Smo+17] Steffen Smolka, Praveen Kumar, Nate Foster, Dexter Kozen, and Alexan-

dra Silva. “Cantor meets Scott: semantic foundations for probabilistic

networks”. In: POPL. 2017, pp. 557–571 (cit. on pp. 75, 168).

[Smo+19] Steffen Smolka, Praveen Kumar, David M. Kahn, Nate Foster, Justin Hsu,

Dexter Kozen, and Alexandra Silva. “Scalable verification of probabilis-

tic networks”. In: PLDI. 2019, pp. 190–203 (cit. on p. 75).

[Smo+20] Steffen Smolka, Nate Foster, Justin Hsu, Tobias Kappé, Dexter Kozen,

and Alexandra Silva. “Guarded Kleene algebra with tests: verification of

uninterpreted programs in nearly linear time”. In: Proc. ACM Program.

Lang. 4.POPL (2020), 61:1–61:28 (cit. on pp. 8, 19, 21–23, 75–77,

80–84, 87, 90, 92, 96, 98–100, 104, 112, 155, 165, 167, 172, 224, 225,

242).

[SP00] Alex K. Simpson and Gordon D. Plotkin. “Complete Axioms for Categor-

ical Fixed-Point Operators”. In: 15th Annual IEEE Symposium on Logic

in Computer Science, Santa Barbara, California, USA, June 26-29, 2000.

IEEE Computer Society, 2000, pp. 30–41 (cit. on p. 251).

[SRS21] Todd Schmid, Jurriaan Rot, and Alexandra Silva. “On Star Expressions

and Coalgebraic Completeness Theorems”. In: MFPS. Vol. 351. EPTCS.

2021, pp. 242–259 (cit. on pp. 27, 28, 34).

[SS00] Eugene W. Stark and Scott A. Smolka. “A complete axiom system for

finite-state probabilistic processes”. In: Proof, Language, and Interaction.

The MIT Press, 2000, pp. 571–596 (cit. on pp. 8, 237, 246).

[Sto49] Marshall Harvey Stone. “Postulates for the barycentric calculus”. In:

Annali di Matematica Pura ed Applicata 29.1 (1949), pp. 25–30 (cit. on

p. 169).

https://arxiv.org/abs/2207.11629

BIBLIOGRAPHY 269

[Świ74] Tadeusz Świrszcz. “Monadic Functors and Convexity”. In: Bulletin de

L’Académie Polonaise des Sciences. Serie de math., astr., and phys. XXII.1

(1974), pp. 39–42 (cit. on p. 169).

[Tar75] Robert Endre Tarjan. “Efficiency of a Good But Not Linear Set Union

Algorithm”. In: J. ACM 22.2 (1975), pp. 215–225 (cit. on p. 76).

[TF06] Toshinori Takai and Hitoshi Furusawa. “Monodic Tree Kleene Algebra”.

In: RelMICS/AKA. 2006, pp. 402–416 (cit. on p. 166).

[Tho68] Ken Thompson. “Programming Techniques: Regular Expression Search

Algorithm”. In: Commun. ACM 11.6 (June 1968), pp. 419–422 (cit. on

p. 36).

[TP97] Daniele Turi and Gordon D. Plotkin. “Towards a Mathematical Opera-

tional Semantics”. In: LICS. IEEE Computer Society, 1997, pp. 280–291

(cit. on p. 246).

[TR98] Daniele Turi and Jan J. M. M. Rutten. “On the Foundations of Final

Coalgebra Semantics: Non-Well-Founded Sets, Partial Orders, Metric

Spaces”. In: vol. 8. 5. 1998, pp. 447–480 (cit. on p. 188).

[VW06] Daniele Varacca and Glynn Winskel. “Distributing probability over non-

determinism”. In: Mathematical Structures in Computer Science 16.1

(2006), pp. 87–113 (cit. on p. 181).

[Wag+19] Jana Wagemaker, Marcello M. Bonsangue, Tobias Kappé, Jurriaan

Rot, and Alexandra Silva. “Completeness and Incompleteness of Syn-

chronous Kleene Algebra”. In: MPC. 2019, pp. 385–413 (cit. on pp. 20,

165).

[Wag+20] Jana Wagemaker, Paul Brunet, Simon Docherty, Tobias Kappé, Jurriaan

Rot, and Alexandra Silva. “Partially Observable Concurrent Kleene

Algebra”. In: CONCUR. 2020, 20:1–20:22 (cit. on pp. 165, 167).

[ZSS22] Stefan Zetzsche, Alexandra Silva, and Matteo Sammartino. “Guarded

Kleene Algebra with Tests: Automata Learning”. In: MFPS. 2022 (cit. on

pp. 76, 225).

Appendix A

ACF Extends GKAT

In this technical appendix, I show that the general framework that I have laid

out in the thesis instantiates to the example of GKAT from the literature. More

specifically, I am going to show that the star fragment of the algebra of control flows

ACF, the effectful process calculus obtained from the theory of guarded algebra

(Example 4.2.7), is equivalent to bisimulation GKAT.

A.1 GKAT is an Effectful Process Algebra

Write StExp for the star fragment syntax in Example 4.5.1, and GExp for the expression

language in Equation (3.1) from Chapter 3. We define two translations,

stg : StExp→ GExp

stg(0) = 0

stg(1) = 1

stg(p) = p

stg(e+A f) = stg(e)+∨
A stg(f)

stg(e f) = stg(e) · stg(f)

stg(e(A)) = stg(e)(
∨

A)

gts : GExp→ StExp

gts(p) = p

gts(b) = 1+{α≤BAb} 0

gts(e+b f) = gts(e)+{α≤BAb} gts(f)

gts(e f) = gts(e) ·gts(f)

gts(e(b)) = gts(e)({α≤BAb})

Notice that gts◦ stg = idStExp. Furthermore, since

GKAT0 ⊢ 1+b 0 (G9,DM)
= b+b 0 = b+b b̄b = b+b b (G1)

= b

an easy inductive argument shows that for any g ∈ GExp, GKAT0 ⊢ g = stg(gts(g)).

We are going to show that both translations preserve bisimilarity and provable

272 Appendix A. ACF Extends GKAT

(EQ∗1) 1e = e1 = e

(EQ∗2) ce = c

(EQ∗3) e1(e2e3) = (e1e2)e3

(EQ∗4) e(σ)
1 e2 = e1e(σ)

1 e2 +σ e2

(∀i≤ n) gi is guarded
(EQ∗5)

p(1, g⃗)(σ) = fp u (p(u, g⃗p(1, g⃗)(σ))+σ 1)
g = eg+σ f e is guarded

(EQ∗6)
g = e(σ) f

Figure A.1: The axioms of EQ∗. Here c ∈ S0, σ ∈ S2, and p(x, y⃗) ∈ S∗X .

equivalence. Here on out, we are going to identify a subset A⊆ At with its Boolean

test
∨

A, and a Boolean test b ∈ BExp with its set of atoms {α ≤BA b} whenever

convenient. The argument for bisimilarity is straightforward: It suffices to show the

following.

Lemma A.1.1. The translation maps stg and gts are LM-coalgebra homomorphisms.

The proof of the above lemma is an easy induction on expressions in both cases.

Translation preserves provable equivalence

In order to see that the star fragment GA∗ of ACF (Example 4.2.7) is equivalent to

bisimulation GKAT, we show that proofs in GA∗ can be replicated in bisimulation

GKAT, and vice versa.

We begin with the following lemma.

Lemma A.1.2. For any e∈ StExp and g∈GExp, e is guarded if and only if E(stg(e)) =BA

0 and E(g) =BA 0 iff gts(g) is guarded.

The proof of the above lemma is straightforward, so we move on to the soundness

of the forward translation.

The next lemma tells us that every equivalence provable in the star fragment

GA∗ of ACF can be proven in bisimulation GKAT.

Lemma A.1.3. Let e, f ∈ StExp. If GA∗ ⊢ e = f , then GKAT0 ⊢ stg(e) = stg(f).

Proof. By induction on the proof of GA∗ ⊢ e = f . Since stg is an algebra homomor-

phism, if GA∗1+ · · ·+GA∗4+GA ⊢ e = f , then GKAT0 ⊢ stg(e) = stg(f). It therefore

suffices to check the axioms GA∗5 and GA∗6.

A.1. GKAT is an Effectful Process Algebra 273

For GA∗5, let g1, . . . ,gn be guarded, and let p(u, x⃗)∈ S∗gslX . Then stg(g1), . . . ,stg(gn)

are guarded in GExp, and fp u (p(u,stg(⃗g))+b 1) = p(0,stg(⃗g))+b 1. Now, there is a

c⊆ At such that for some q(⃗x), GA ⊢ p(1,stg(⃗g)) = 1+c q(stg(⃗g)). Hence,

GKAT0 ⊢ stg(p(1, g⃗)(b)) = p(1,stg(⃗g))(b)

= (1+c q(stg(⃗g)))(b)

= (0+c q(stg(⃗g)))(b)

= (p(0,stg(⃗g)))(b)

= p(0,stg(⃗g)) · (p(0,stg(⃗g)))(b)+b 1

= p(0,stg(⃗g) · (p(0,stg(⃗g)))(b))+b 1

= fp u (p(u,stg(⃗g) · (p(0,stg(⃗g)))(b))+b 1)

= fp u (p(u,stg(⃗g) · (p(1,stg(⃗g)))(b))+b 1)

= stg(fp u (p(u, g⃗p(1, g⃗))(b))+b 1)

Since E(stg(e)) =BA 0 when e is guarded, if GA∗ ⊢ g = eg+b f and

GKAT0 ⊢ stg(g) = stg(eg+b f) = stg(e) · stg(g)+b stg(f)

then by (GA∗6) and the induction hypothesis,

GA∗ ⊢ stg(g) = stg(e)(b) · stg(f) = stg(e(b) f)

The next lemma tells us that every equivalence provable in bisimulation GKAT

can be proven in the star fragment GA∗ of ACF.

Lemma A.1.4. Let e, f ∈ GExp. If GKAT0 ⊢ e = f , then GA∗ ⊢ gts(e) = gts(f).

Proof. Again, by induction on the proof of GKAT0 ⊢ e = f . If e = b ∈ BExp and

f = c ∈ BExp and BA ⊢ b = c, then GA∗ ⊢ 1+b 0 = 1+c 0 because PAt is a Boolean

algebra (technically, gts(b) = 1+{α∈At|α≤BAb}0). If ⊢ e= f follows from one application

of any rules in the Guarded Union column of Figure 3.5, then GA ⊢ e = f . Also,

(GA∗1)-(GA∗4) coincide precisely with sequencing and loop axioms of GKAT.

Now let’s check the equation (e+c 1)(b) = (ce)(b) is preserved by gts. This amounts

274 Appendix A. ACF Extends GKAT

to checking that

GA∗ ⊢ (gts(e)+c 1)(b) = (gts(e)+c 0)(b)

Unsurprisingly, GA∗ satisfies an analogue of the fundamental theorem of GKAT, so

we know that there is a d ∈ BExp such that for some guarded g∈ StExp, GA∗ ⊢ gts(e) =

g+d 1. Hence, on the one hand,

GA∗ ⊢ (gts(e)+c 1)(b) = ((g+d 1)+c 1)(b)

= ((g((g+d 1)+c 1)(b)+d 0)+c 0)+b 1 (GA∗5)

= ((g+d 0)+c 0)((g+d 1)+c 1)(b)+b 1

= ((g+d 0)+c 0)(b) (GA∗6)

And on the other hand,

GA∗ ⊢ ((g+d 1)+c 0)(b) = ((g((g+d 1)+c 0)(b)+d 0)+c 0)+b 1 (GA∗5)

= ((g+d 0)+c 0)((g+d 1)+c 0)(b)+b 1

= ((g+d 0)+c 0)(b) (GA∗6)

It follows that

GA∗ ⊢ (gts(e)+c 1)(b) = ((g+d 1)+c 1)(b)

= ((g+d 0)+c 0)(b)

= ((g+d 1)+c 0)(b)

= (gts(e)+c 0)(b)

as desired. Finally, if GKAT0 ⊢ g = e ·g+b f and

GA∗ ⊢ gts(g) = gts(e ·g+b f) = gts(e) ·gts(g)+c gts(f)

and e is guarded, then since E(gts(e)) =BA 0, by (GA∗5),

GA∗ ⊢ gts(g) = gts(e)(c)gts(f) = gts(e(b) · f)

This concludes the proof of equivalence between GA∗ and bisimulation GKAT,

A.1. GKAT is an Effectful Process Algebra 275

because

GA∗ ⊢ e = f =⇒ GKAT0 ⊢ stg(e) = stg(f)

=⇒ GA∗ ⊢ gts◦ stg(e) = gts◦ stg(f)

⇐⇒ GA∗ ⊢ e = f

It follows that stg : StExp/GA∗ → GExp/GKAT0, the corresponding map between

congruence classes, is a bijection. Furthermore, stg preserves the algebraic operations

of GA∗. This implies that StExp/GA∗ and GExp/GKAT0 are isomorphic as Ω-algebras,

where Ω is algebraic signature of GA∗. It is in this sense that bisimulation GKAT is

equivalent to GA∗.

	Introduction
	Background
	Scope of the Thesis
	Related Work
	Overview of the Thesis

	Star Expressions and Coalgebraic Completeness Theorems
	Star Expressions and Grabmayer's Theorem
	One-free Star Expressions
	Precharts are Coalgebras
	Axiomatizing Bisimilarity
	Left-affine Systems and Solutions

	A Local Approach
	Layered Loop Existence and Elimination
	Well-layeredness
	A note about natural transformations in coalgebra
	Existence and uniqueness of solutions
	Reroutings and Closure under homomorphic images
	A note about reroutings in general

	A Global Approach
	A global approach to the one-free fragment
	From local to global

	Discussion

	Guarded Kleene Algebra with Tests
	Guarded Kleene Algebra with Tests
	The Syntax
	Relational/Language Semantics of GKAT
	Bisimulation Semantics of GKAT
	Sound Program transformations in GKAT
	Completeness of Bisimulation GKAT with UA
	Completeness of GKAT with UA
	The Proof of thm:gkat nesting robust
	Concluding remarks about GKAT

	Skip-free Guarded Kleene Algebra with Tests
	Skip-free Expressions
	Semantics

	Completeness for Skip-free Bisimulation GKAT
	From skip-free automata to labelled transition systems
	Translating Syntax

	Completeness for Skip-free Language GKAT
	Relation to GKAT
	Related Work
	Discussion

	Effectful Process Calculi
	A Parametrized Family of Process Types
	Specifications of Processes
	Behavioural Equivalence and the Final Coalgebra
	The Proof of thm:existence of gamma
	The Proof of lem:behavioural over syntactic

	An Axiomatization of Behavioural Equivalence
	Star Fragments
	One Last Completeness Theorem

	Related Work

	Conclusions and Future Work
	Future Work
	Coequations
	Guarded Kleene Algebra with Tests
	Effectful Process Algebras

	ACF Extends GKAT
	GKAT is an Effectful Process Algebra

